回归预测 | Matlab实现BiTCN基于双向时间卷积网络的数据回归预测
回归预测 | Matlab实现BiTCN基于双向时间卷积网络的数据回归预测
目录
- 回归预测 | Matlab实现BiTCN基于双向时间卷积网络的数据回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览


基本介绍
1.Matlab实现BiTCN基于双向时间卷积网络的数据回归预测(完整源码和数据)
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整源码和数据获取方式私信博主回复Matlab实现BiTCN基于双向时间卷积网络的数据回归预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1); % 输入特征维度%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | Matlab实现BiTCN基于双向时间卷积网络的数据回归预测
回归预测 | Matlab实现BiTCN基于双向时间卷积网络的数据回归预测 目录 回归预测 | Matlab实现BiTCN基于双向时间卷积网络的数据回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BiTCN基于双向时间卷积网络的数据回归预测(完整源码和数据&a…...
Tailscale中继服务derper使用docker-compose部署
docker启动 docker run --restart always \--name derper -p 12345:12345 -p 3478:3478/udp \-v /root/.acme.sh/xxxx/:/app/certs \-e DERP_CERT_MODEmanual \-e DERP_ADDR12345 \-e DERP_DOMAINxxxx \-d ghcr.io/yangchuansheng/derper:latestdocker-compose启动 version: …...
Spring Cloud 实战系列之 Zuul 微服务网关搭建及配置
一、创建SpringBoot项目 用mavan搭建也可以。(重要的是后面pom里应该引入那些依赖,application.yml怎么配置) 由于开始构建项目时选择了Eureka Server,所以pom.xml中不需要手动添加依赖了 首先在启动类SpringcloudApplicatio…...
【数据结构】队列
前言: 本节博客是对基础数据结构队列的一种实现思路的分享,有需要借鉴即可。 1.队列的概念 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先 进先出FIFO(First In First Out) 入…...
学习JAVA的第十三天(基础)
目录 API之Arrays 将数组变成字符串 二分查找法查找元素 拷贝数组 填充数组 排序数组 Lambda表达式 集合的进阶 单列集合 体系结构 Collection API之Arrays 操作数组的工具类 将数组变成字符串 //将数组变成字符串char[] arr {a,b,c,d,e};System.out.println(Arra…...
C++--机器人的运动范围
目录 1. 题目 2. 思路 3. C代码测试 4. 测试结果 1. 题目 地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格…...
深度学习API——keras初学
keras定义相关概念: Keras是一个深度学习API,使用Python语言编写的github开源项目,主要开发者为谷歌工程师。Keras底层可调用不同的机器学习平台,如TensorFlow、Theano或micsoft-CNTK。 作用:keras主要功能是简化机器…...
Web APIs知识点讲解(阶段二)
DOM-事件基础 一.事件 1.事件 目标:能够给 DOM元素添加事件监听 事件:事件是在编程时系统内发生的动作或者发生的事情,比如用户在网页上单击一个按钮 事件监听:就是让程序检测是否有事件产生,一旦有事件触发,就立即调用一个函…...
多平台拼音输入法软件的开发
拼音输入法从上个世纪发展到现在, 已经发展了几十年了, 技术上已经非常成熟了. 换句话说, 就是实际上没多少技术含量, 随便来个人就能手搓一个. 本文介绍一个简单的多平台拼音输入法软件的设计和实现, 支持 GNU/Linux (ibus) 平台 (PC) 和 Android 平台 (手机). 目录 1 中文输…...
Flutter学习7 - Dart 泛型
1、泛型类 //泛型类 class Cache<T> {final Map<String, T> _cache {};void saveData(String key, T value) {_cache[key] value;}//泛型方法T? getData(String key) {return _cache[key];} }void main() {Cache<int> cache1 Cache();const String name…...
Git 基本操作 ⼯作区、暂存区、版本库
创建本地仓库: 创建 Git 本地仓库 要提前说的是,仓库是进行版本控制的⼀个文件目录。我们要想对文件进行版本控制,就必须先创建⼀个仓库出来。 首先touch 一个文件: 初始化仓库: 创建完成后,我们会发现当前…...
利用Vue3的新API(customRef)实现防抖效果
customRef是创建一个自定义的 ref,然后显式声明对其依赖追踪和更新触发的控制方式。因为ref是直接更新的,数据修改会马上更新,而customRef可以认为控制更新的过程,比如可以利用这个api控制 空格输入限制、数据更新速度控制、违规内…...
【Linux】在 Ubuntu 系统下使用 Screen 运行 Python 脚本
在 Ubuntu 系统下使用 Screen 运行 Python 脚本的优点 在 Ubuntu 操作系统中,Screen 是一种非常有用的工具,特别是在需要长时间运行的任务或者需要在后台运行的任务中。结合 Python 脚本,Screen 提供了一种灵活且高效的方式来管理和执行任务…...
jxls——自定义命令设置动态行高
文章目录 前言依赖引入绘制 jxls 批注的 excel 模板测试类编写自定义命令关于自动换行 前言 之前的博客中都简单说了数据的渲染和导出excel文件。包括固定的 表头结构,以及动态 表头和表数据等方式。 本篇博客主要说明自定义命令的方式,控制输出excel文…...
前端面试练习24.3.2-3.3
HTMLCSS部分 一.说一说HTML的语义化 在我看来,它的语义化其实是为了便于机器来看的,当然,程序员在使用语义化标签时也可以使得代码更加易读,对于用户来说,这样有利于构建良好的网页结构,可以在优化用户体…...
优先级队列(Java )
目录 一、 优先级队列1、概念 二、优先级队列的模拟实现1、堆的概念2、堆的存储方式 三、堆的创建1、堆向下调整2、堆的创建3、建堆的时间复杂度 四、堆的插入与删除1、堆的插入2、堆的删除 五、用堆模拟实现优先级队列 一、 优先级队列 1、概念 优先级队列(Priori…...
大宋咨询如何进行汽车门店6S标准现场检查
随着汽车市场的快速发展,汽车门店的现场管理日益受到关注。6S标准现场检查作为一项重要的评估工具,正在被越来越多的汽车厂商和经销商采用。 6S标准现场检查是指对汽车门店的整理、整顿、清洁、清扫、素养和安全六个方面进行规范和优化,旨在…...
仿牛客网项目---点赞模块的实现
本篇文章介绍一下项目中的点赞模块。 点赞模块是一个通过使用Redis实现的功能模块,它提供了点赞操作的处理逻辑和数据存取功能。通过服务类和控制器类的配合,点赞模块实现了用户对实体的点赞、点赞数量的查询、点赞状态的查询等功能。该模块使用了Redis…...
【AI视野·今日CV 计算机视觉论文速览 第300期】Fri, 1 Mar 2024
AI视野今日CS.CV 计算机视觉论文速览 Fri, 1 Mar 2024 Totally 114 papers 👉上期速览✈更多精彩请移步主页 Daily Computer Vision Papers DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models Authors Muyang Li, Tianle Cai, J…...
【单片机学习的准备】
文章目录 前言一、找一个视频是二、画图软件三、装keil5 仿真protues总结 前言 提示:这里可以添加本文要记录的大概内容: 项目需要: 提示:以下是本篇文章正文内容,下面案例可供参考 一、找一个视频是 https://www.b…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
