【脑切片图像分割】MATLAB 图像处理 源码
1. 简单图像处理
加载图像 Brain.jpg,使用直方图和颜色分割成区域这些区域有不同的颜色。 这是一个更高级的问题,有多个解决它的方法。
例如,您可以计算具有特定数字的图像的直方图(例如 16 - 32),找到直方图中最小值的位置(参见,例如,islocalmin)并对最小值之间的强度区域应用不同的颜色。这可以通过将强度值作为颜色查找表的索引来完成(例如 hsv 生成)并将强度值重新映射到此类(请参阅 ind2rgb)。 您可以还可以通过灰度强度来缩放颜色的强度。

2. MATLAB 源码
% Load and show image
im = imread('brain.jpg');
im = rgb2gray(im);
figure(1);
clf;
subplot(1,3,1);
imshow(im);% Histogram
bins = 24;
subplot(1,3,2);
[counts,idx] = imhist(im,bins);
plot(idx,counts);
axis tight;
% Find minima and make sure they are integers
minima = round(idx(islocalmin(counts))');
xline(minima);% Color regions by mapping greyscale to colormap indices
colors = hsv(numel(minima)+1); % HSV colormap for base-color for region (over hue values only)
cc = 1;
p = 0;
map = zeros(256,3);
for l = [minima, 256] % cover index (intensity) ranges from p to l, including the last one to 256cidx = (p+1):l;for k = cidx % Loop for simplicity (instead of matrix operation)%map(k,:) = colors(cc,:); % No scaling w.r.t original itensity%map(k,:) = colors(cc,:) * k/256; % Linearly scale color value w.r.t. original intensitymap(k,:) = colors(cc,:) * (0.25 + (k-p-1)/(l-p-1)*0.75); % Different color itensity scalingendp = l;cc = cc + 1;
end
imc = ind2rgb(im,map);
subplot(1,3,3);
imshow(imc);% Show ranges in histogram by overlaying colors (could be integrated in above loop)
subplot(1,3,2);
y1 = 0;
y2 = max(counts);
cc = 1;
p = 0;
for l = [minima,256]h = rectangle('Position', [p, 0, l-p, y2], ...'FaceColor', [colors(cc,:),0.3], ...'EdgeColor', [colors(cc,:),0.3]);p = l;cc = cc + 1;
end
3. 输出结果
脑切片图像分割结果


相关文章:
【脑切片图像分割】MATLAB 图像处理 源码
1. 简单图像处理 加载图像 Brain.jpg,使用直方图和颜色分割成区域这些区域有不同的颜色。 这是一个更高级的问题,有多个解决它的方法。 例如,您可以计算具有特定数字的图像的直方图(例如 16 - 32),找到直方…...
深度学习系列61:在CPU上运行大模型
1. 快速版 1.1 llamafile https://github.com/Mozilla-Ocho/llamafile 直接下载就可以用,链接为:https://huggingface.co/jartine/llava-v1.5-7B-GGUF/resolve/main/llava-v1.5-7b-q4.llamafile?downloadtrue 启动:./llava-v1.5-7b-q4.lla…...
IO接口 2月5日学习笔记
1.fgetc 用于从文件中读取一个字符,fgetc 函数每次调用将会返回当前文件指针所指向的字符,并将文件指针指向下一个字符。 int fgetc(FILE *stream); 功能: 从流中读取下一个字符 参数: stream:文件流指针 返回值: …...
Android Studio开发(一) 构建项目
1、项目创建测试 1.1 前言 Android Studio 是由 Google 推出的官方集成开发环境(IDE),专门用于开发 Android 应用程序。 基于 IntelliJ IDEA: Android Studio 是基于 JetBrains 的 IntelliJ IDEA 开发的,提供了丰富的功能和插件…...
stm32flash模拟eeprom
stm32f103CB的flash是128k(起始地址是 0x08000000 到 0x0801FFFF) falsh的末地址是0x801FFFF,即倒数一页是0x801FBFF(1页按照1kB1024B来算) stm32f103参考手册stm32f103cb.pdf stm32的FLASH分为主存储块和信息块&…...
多模态MLLM都是怎么实现的(2)-DDPM
上一篇的链接:多模态MLLM都是怎么实现的(2) (qq.com) 上上篇的链接:多模态MLLM都是怎么实现的(1) (qq.com) 在第一篇我们简单介绍了一下多模态训练的原理,包括clip,第二篇正好Sora横空出世,也让我就Dit做了一下抛砖引玉,顺便讲了VAE和ViT的部分,上节课我说过, DiT…...
QT----写完的程序打包为APK在自己的手机上运行
目录 1、qt安装android组件2、打开qt配置Android 环境3、手机打开开发者模式,打开usb调试,连接电脑4、运行代码 1、qt安装android组件 qtcreater–工具-QTMaintenaceTool-startMaintenaceTool—登陆—添加或修改组件—找到android,安装 若是…...
Windows C++ SecurityImpersonation级别:线程临时采用另一个用户(客户端)的身份进行操作的能力
SecurityImpersonation 是 Windows 操作系统中安全模型的一个级别,用于描述一个线程临时采用另一个用户(客户端)的身份进行操作的能力。这是Windows安全性的一个核心概念,允许服务或进程在执行特定任务时拥有与请求该服务的用户相…...
重学SpringBoot3-yaml文件配置
重学SpringBoot3-yaml文件配置 引言YAML 基本语法YAML 数据类型YAML 对象YAML 数组复合结构标量引用 YAML 文件结构Spring Boot 中的 YAML 配置注意事项总结参考 引言 YAML(YAML Ain’t Markup Language)是一种常用于配置文件的数据序列化格式ÿ…...
【管理咨询宝藏资料33】某头部咨询公司组织效能提升模型方案
本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏资料33】某头部咨询公司组织效能提升模型方案 【关键词】战略规划、组织效能、管理咨询 【文件核心观点】 - 通过长期行业积累和市场洞察&#…...
特征值和特征向量及其在机器学习中的应用
特征值和特征向量是线性代数中的概念,用于分析和理解线性变换,特别是由方阵表示的线性变换。它们被用于许多不同的数学领域,包括机器学习和人工智能。 在机器学习中,特征值和特征向量用于表示数据、对数据执行操作以及训练机器学…...
【Vue3】Ref 和 ShallowRef 的区别
这里写自定义目录标题 什么是 Ref什么是 ShallowRef区别对比示例代码 什么是 Ref Ref 是 Vue 3 中的一个新的基本响应式数据类型,它允许我们包装任意的 JavaScript 值,并且在数据变化时发出通知。Ref 提供了一个 .value 属性来访问其内部的值࿰…...
Linux - 进程概念
1、冯诺依曼体系结构 我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系; 截至目前,我们所认识的计算机,都是有一个个的硬件组件组成: 输入单元:…...
H5小游戏,象棋
H5小游戏源码、JS开发网页小游戏开源源码大合集。无需运行环境,解压后浏览器直接打开。有需要的,私信本人,发演示地址,可以后再订阅,发源码,含60+小游戏源码。如五子棋、象棋、植物大战僵尸、开心消消乐、扑鱼达人、飞机大战等等 <!DOCTYPE html PUBLIC "-//W3C/…...
LLM春招准备(1)
llm排序 GPT4V GPT-4V可以很好地理解直接绘制在图像上的视觉指示。它可以直接识别叠加在图像上的不同类型的视觉标记作为指针,例如圆形、方框和手绘(见下图)。虽然GPT-4V能够直接理解坐标,但相比于仅文本坐标,GPT-4V在…...
网络安全知识点总结
1、常见的网络攻击有哪些? 答:(1)口令攻击:也就是窃取用户的账户和密码,普通用户习惯于设置简单的密码,且多个系统用同一套密码,黑客可以使用字典攻击(常用密码库&#…...
服务完善的智能组网系统?
智能组网是现代信息技术的重要组成部分,它通过将各种设备和计算机连接起来,实现高效的数据传输和远程通信。在一个全球化、高度互联的时代背景下,智能组网已经成为了各行各业的必需品。传统的组网方案往往面临着许多问题和挑战。为了解决这些…...
VS2022如何添加行号?(VS2022不显示行号解决方法)
VS2022不显示行号解决方法 VS2022是非常好用的工具,很多同学在初学C/C的时候,都会安装,默认安装好VS2022后,写代码时,在编辑框的窗口左边就有显示行号,如下图所示: 但是有些同学安装好后&#…...
125.验证回文字符串
如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s,如果它是 回文串 ,返回 true ;否则&#…...
Spring Boot的启动流程(个人总结,仅供参考)
SpringBoot应用程序的启动流程主要包括初始化SpringApplication和运行SpringApplication两个过程。 1.初始化SpringApplication包括配置基本的环境变量、资源、构造器和监听器,初始化阶段的主要作用是为运行SpringApplication实例对象启动环境变量准备以及进行必要的…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
WEB3全栈开发——面试专业技能点P4数据库
一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库,基于 mysql 库改进而来,具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点: 支持 Promise / async-await…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
PydanticAI快速入门示例
参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...
