基于FastAPI构造一个AI模型部署应用
前言
fastapi是目前一个比较流行的python web框架,在大模型日益流行的今天,其云端部署和应用大多数都是基于fastapi框架。所以掌握和理解fastapi框架基本代码和用法尤显重要。
需要注意的是,fastapi主要是通过app对象提供了web服务端的实现代码,对于一个完整应用来说,还需要uvicorn组件来启动web服务,如果想要可视化UI的话,可以考虑使用streamlit前端。
代码
大家可以基于下面这个简单代码例子(参考GitHub - markthink/streamlit-fastapi-model,稍有修改)来加深理解。一共三个python源文件: segmentation.py(获取pytorch deeplabv3模型和推理该模型实现图像分割), ui.py(基于streamlit构造webUI供用户来选择图片并显示结果)和server.py(基于fastapi编写服务端函数来响应前端UI发来的/segmentation消息)。
segmentation.py:
import io, torch
from PIL import Image
from torchvision import transformsdef get_segmentator():model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True)model.eval()return modeldef get_segments(model, binary_image, max_size=512):input_image = Image.open(io.BytesIO(binary_image)).convert("RGB")width, height = input_image.sizeresize_factor = min(max_size/width,max_size/height)resize_image = input_image.resize((int(input_image.width * resize_factor),int(input_image.height*resize_factor)))preprocess = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])])input_tensor = preprocess(resize_image)input_batch = input_tensor.unsqueeze(0)with torch.no_grad():output = model(input_batch)['out'][0]output_predictions = output.argmax(0)# create a color pallette, selecting a color for each classpalette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])colors = torch.as_tensor([i for i in range(21)])[:, None] * palettecolors = (colors % 255).numpy().astype("uint8")r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)r.putpalette(colors)return r
ui.py:
import io, requests
import streamlit as st
from PIL import Image
from requests_toolbelt.multipart.encoder import MultipartEncoder#backend = "http://fastapi:8000/segmentation"
backend = "http://0.0.0.0:8000/segmentation"def process(image, server_url:str):m = MultipartEncoder(fields={"file": ("filename", image, "image/jpeg")})r = requests.post(server_url, data=m, headers={"Content-Type":m.content_type}, timeout=8000)return rst.title("DeepLabV3 image segmentation")
st.write("AI inference demo for fastapi calling pytorch model")input_image = st.file_uploader("pls input one image")
if st.button("get image segmentation"):col1, col2 = st.columns(2)if input_image:segments = process(input_image, backend)original_image = Image.open(input_image).convert("RGB")segmented_image = Image.open(io.BytesIO(segments.content)).convert("RGB")col1.header("original version")col1.image(original_image, use_column_width=True)col2.header("segmentation version")col2.image(segmented_image, use_column_width=True)else:st.write("pls input one image")
server.py:
import io
from segmentation import get_segmentator, get_segments
from starlette.responses import Response
from fastapi import FastAPI, Filemodel = get_segmentator()app = FastAPI(title="Deeplabv3 image segmentation",description="demo for deploying pytorch models with fastapi",version="0.1.0"
)@app.post('/segmentation')
def get_segmentation(file:bytes=File(...)):print("hello post")segmented_img = get_segments(model, file)bytes_io = io.BytesIO()segmented_img.save(bytes_io, format='PNG')return Response(bytes_io.getvalue(), media_type='image/png')
这三个文件放在一个目录下面,启动两个terminal窗口分别输入命令:
uvicorn server:app --host 0.0.0.0 --port 8000
streamlit run ui.py
全部代码在CPU+ubuntu20.04上运行成功,无需GPU加速。
webui如下图所示
首先点击Browse file按钮,选择待分割图片,然后点击get image segmentation按钮就可以看到原始图片和分割结果。
相关文章:

基于FastAPI构造一个AI模型部署应用
前言 fastapi是目前一个比较流行的python web框架,在大模型日益流行的今天,其云端部署和应用大多数都是基于fastapi框架。所以掌握和理解fastapi框架基本代码和用法尤显重要。 需要注意的是,fastapi主要是通过app对象提供了web服务端的实现代…...

【Unity】使用ScriptableObject存储数据
1.为什么要用ScriptableObject? 在游戏开发中,有大量的配置数据需要存储,这个时候就需要ScriptableObject来存储数据了。 很多人会说我可以用json、xml、txt,excel等等 但是你们有没有想过,假设你使用的是json&#x…...
ChatGPT聊天机器人数据隐私和安全问题
ChatGPT是否安全使用? 是的,ChatGPT是安全的,因为它无法对你或你的计算机造成任何直接损害。由于网页浏览器和智能手机操作系统都使用了沙箱技术,因此ChatGPT无法访问你设备的其余部分。换句话说,当你使用ChatGPT应用程…...
MyBatis三个经典问题
1. Mybatis的执行流程 MyBatis 是一个流行的 Java 持久化框架,提供了对象关系映射 (ORM) 和 SQL 映射的功能,使开发者能够更加方便地与数据库交互。MyBatis 的执行流程大致如下: 配置阶段: 加载配置文件: MyBatis 通过读取配置文件ÿ…...

JavaEE+springboot教学仪器设备管理系统o9b00-springmvc
本文旨在设计一款基于Java技术的教学仪器设备销售网站,以提高网站性能、功能完善、用户体验等方面的优势,解决现有教学仪器设备销售网站的问题,并为广大教育工作者和学生提供便捷的教学仪器设备销售渠道。本文首先介绍了Java技术的相关基础知…...

Java项目:37 springboot003图书个性化推荐系统的设计与实现
作者主页:源码空间codegym 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 springboot003图书个性化推荐系统的设计与实现 管理员:首页、个人中心、学生管理、图书分类管理、图书信息管理、图书预约管理、退…...
mysql 8 修改账号密码
一 进入Mysql bin目录 cmd 运行(跳过密码),运行完不要关闭 mysqld --console --skip-grant-tables --shared-memory 二 新打开一个cmd mysql bin 目录下登录,密码输入时,直接回车 mysql -uroot -p 三 修改密码 m…...
拜占庭将军问题与区块链
文章目录 拜占庭将军问题问题背景问题的现实意义将军-副官模型三将军问题四将军问题3m将军问题 口头消息算法基本假设方法介绍正确性证明 签名消息算法 区块链区块链是什么区块链对于拜占庭将军问题的解决方法工作量证明奖励机制最长链原则小结 区块链的意义 总结 拜占庭将军问…...

字节跳动热门的前端开源项目
字节跳动开源官网 Arco Dsign Arco Design 是一套设计系统,主要服务于字节跳动旗下中后台产品的体验设计和技术实现。它的目标在于帮助设计师与开发者解放双手、提升工作效率,并高质量地打造符合业务规范的中后台应用。它拥有系统的设计规范和资源&…...

uniapp+vue基于Android的图书馆借阅系统qb4y3-nodejs-php-pyton
uni-app框架:使用Vue.js开发跨平台应用的前端框架,编写一套代码,可编译到Android、小程序等平台。 框架支持:springboot/django/php/Ssm/flask/express均支持 前端开发:vue 语言:pythonjavanode.jsphp均支持 运行软件:idea/eclip…...

RabbitMQ如何实现延迟消息?
RabbitMQ中是可以实现延迟消息的,一般有两种方式,分别是通过死信队列以及通过延迟消息插件来实现。 扩展: 死信队列 当rabbitMQ中的一条正常的消息,因为过了存活时间(TTL过期),队列长度超限&a…...

Svg Flow Editor 原生svg流程图编辑器(一)
效果展示 项目概述 svg flow editor 是一款流程图编辑器,提供了一系列流程图交互、编辑所必需的功能,支持前端研发自定义开发各种逻辑编排场景,如流程图、ER 图、BPMN 流程等。 目前也有比较好的流程图设计框架,但是还是难满足项目…...

头像剪切上传
头像剪切上传 文章说明核心Api示例源码效果展示源码下载 文章说明 本文主要为了学习头像裁剪功能,以及熟悉canvas绘图和转文件的相关操作,参考教程(Web渡一前端–图片裁剪上传原理) 核心Api 主要就一个在canvas绘图的操作 context…...
24计算机考研调剂 | 北京信息科技大学
北京信息科技大学接收调剂研究生 考研调剂招生信息 学校:北京信息科技大学 专业:工学->控制科学与工程->控制理论与控制工程 年级:2024 招生人数:- 招生状态:正在招生中 联系方式:********* (为保护个人隐私,联系方式仅限APP查看) 补充内容 各位同学,…...

06 - 镜像管理
1 了解镜像 Docker镜像是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。 但注意, 镜像不包含任何动态数据&#…...

最简单 导航栏 html css
dhl.html <!DOCTYPE html> <html><head><meta charset"utf-8"><title>导航栏</title><link type"text/css" rel"stylesheet" href"css/dhl.css"></head><div class"dhl&quo…...
PostgreSQL的学习心得和知识总结(一百三十一)|深入理解PostgreSQL数据库如何使用psql中的变量
目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《PostgreSQL数据库内核分析》 2、参考书籍:《数据库事务处理的艺术:事务管理与并发控制》 3、PostgreSQL数据库仓库链接,点击前往 4、日本著名PostgreSQL数据库专家 铃木启修 网站…...

支付宝小程序模板开发,实现代小程序备案申请
大家好,我是小悟 支付宝小程序备案整体流程总共分为五个环节:备案信息填写、平台初审、工信部短信核验、通管局审核和备案成功。 服务商可以代小程序发起备案申请。在申请小程序备案之前,需要确保小程序基本信息已填写完成、小程序至少存在一…...
怎么培养孩子的学习习惯?
问:在亲子阅读中,应该用哪些方法引导孩子自己主动阅读呢? 有很多家长会问如何培养孩子主动阅读的兴趣? 我想给你四个词来分享,分别是环境、选择的权利、适龄,还有增强回路。第一个环境,就是把…...

deeplearning with pytorch (三)
一.基本概念 1.Convolutional Neural Network Intro mnist数据集 2.Image Filter / Image Kernel Image Kernels explained visually 访问这个网站可以直观看到image kernels对图片的影响 3.Convolutional Layer and RGB 为什么要用巻积神经网络代替人工神经网络 上图是…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...

CTF show 数学不及格
拿到题目先查一下壳,看一下信息 发现是一个ELF文件,64位的 用IDA Pro 64 打开这个文件 然后点击F5进行伪代码转换 可以看到有五个if判断,第一个argc ! 5这个判断并没有起太大作用,主要是下面四个if判断 根据题目…...

Pandas 可视化集成:数据科学家的高效绘图指南
为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...