当前位置: 首页 > news >正文

YOLOv9独家原创改进|增加SPD-Conv无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、文章摘要

        卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时,它们的性能会灾难性下降。这是由于现有CNN常见的设计体系结构中有缺陷,即使用卷积步长和/或池化层,这导致了细粒度信息的丢失和较低效的特征表示的学习。为此,我们提出了一个名为SPD-Conv的新的CNN构建块来代替每个卷积步长和每个池化层(因此完全消除了它们)。SPD-Conv由一个空间到深度(SPD)层和一个无卷积步长(Conv)层组成,可以应用于大多数CNN体系结构。我们从两个最具代表性的计算即使觉任务:目标检测和图像分类来解释这个新设计。然后,我们将SPD-Conv应用于YOLOv5和ResNet,创建了新的CNN架构,并通过经验证明,我们的方法明显优于最先进的深度学习模型,特别是在处理低分辨率图像和小物体等更困难的任务时。

适用检测目标:   通用下采样模块


二、SPD-Conv模块详解

        论文地址:   https://arxiv.org/pdf/2208.03641v1.pdf

 2.1 模块简介

        SPD-Conv的主要思想:   SPD- conv由一个空间到深度(SPD)层和一个非跨步卷积层组成。SPD组件推广了一种(原始)图像转换技术来对CNN内部和整个CNN的特征映射进行下采样。

 总结: 一种通过卷积与线性变化实现的新下采样模块。

 SPD- conv模块的原理图


三、SPD-Conv模块使用教程

3.1 SPD-Conv模块的代码

class SPDConv(nn.Module):# Changing the dimension of the Tensordef __init__(self, inc, ouc, dimension=1):super().__init__()self.d = dimensionself.conv = Conv(inc * 4, ouc, k=3)def forward(self, x):x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)x = self.conv(x)return x

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

        1. 将YOLOv9工程中models下common.py文件中增加模块的代码。

         2. 将YOLOv9工程中models下yolo.py文件中的第718行(可能因版本变化而变化)增加以下代码。

        elif m in (SPDConv,):args = [ch[f], ch[f]]

3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy# parameters
nc: 80  # number of classes
#depth_multiple: 0.33  # model depth multiple
depth_multiple: 1  # model depth multiple
#width_multiple: 0.25  # layer channel multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, SPDConv, []],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

3.4 训练过程


欢迎关注!


相关文章:

YOLOv9独家原创改进|增加SPD-Conv无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块

专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!! 一、文章摘要 卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时&…...

Android Gradle开发与应用 (四) : Gradle构建与生命周期

1. 前言 前几篇文章,我们对Gradle中的基本知识,包括Gradle项目结构、Gradle Wrapper、GradleUserHome、Groovy基础语法、Groovy语法概念、Groovy闭包等知识点,这篇文章我们接着来介绍Gradle构建过程中的知识点。 2. Project : Gradle中构建…...

[MRCTF2020]Transform1

a[33]"9,10,15,23,7,24,12,6,1,16,3,17,32,29,11,30,27,22,4,13,19,20,21,2,25,5,31,8,18,26,28,14" b[33]"103,121,123,127,117,43,60,82,83,121,87,94,93,66,123,45,42,102,66,126,76,87,121,65,107,126,101,60,92,69,111,98,77" python代码 a3 [103…...

JavaWeb HTTP 请求头、请求体、响应头、响应体、响应状态码

J2EE(Java 2 Platform Enterprise Edition)是指“Java 2企业版”,B/S模式开发Web应用就是J2EE最核心的功能。 Web是全球广域网,也称为万维网(www),能够通过浏览器访问的网站。 在日常的生活中,经常会使用…...

穿越数字防线:SSH协议的全景解析与未来展望

SSH基本概念 SSH(Secure Shell)是一个用于计算机网络的加密协议,设计用来提供一种安全的方式通过不安全的网络进行远程登录和其他网络服务。SSH协议主要用于远程管理系统和安全地传输信息。 SSH的历史背景 SSH由Tatu Ylnen于1995年开发&am…...

语文教学方法有哪些,产生了什么效果

你是否曾想过,一位普通的语文老师如何化身为智慧的引导者,点燃学生心中的求知之火?让我们一起探寻那些神奇的语文教学方法,以及它们带来的深远影响。 不仅让知识变得容易理解,更在无形中培养了学生的各项能力。通过谈话…...

Docker之网络配置

目录 一. Docker网络介绍 1.1 网络模式 1.2 bridge模式(默认模式) 1.2.1 什么是桥接模式 1.2.2 效果演示 1.2.3 桥接模式的特点 1.3 host模式 1.3.1 什么是host模式 1.3.2 仅主机模式的特点 二. Docker网络实操 2.1 bridge桥接模式 2.1 host仅主机模式 三. Docker自定义网络…...

Mybatis实现分页查询数据(代码实操讲解)

在MyBatis中实现分页查询的常见方式有两种:使用MyBatis内置的分页插件如PageHelper,或者手动编写分页的SQL语句。下面我将为你提供两种方式的示例代码。 使用PageHelper分页插件 首先,确保你的项目中已经添加了PageHelper的依赖。在Maven项…...

【自动驾驶技术系列丛书学习】1.《自动驾驶技术概论》学习笔记

《自动驾驶技术概论》学习笔记 致谢:作者:王建、徐国艳、陈竞凯、冯宗宝 -------------------------------------------------------------------------------------------------------- 笔记目录 《自动驾驶技术概论》学习笔记 1.汽车发展史 2.国…...

2023年全国职业院校技能大赛 GZ073网络系统管理赛项 模块A:网络构建(运维配置)

1.完成整网连通后,进入网络监控运维阶段,运维软件已安装在PC的虚拟机中,通过运维平台监控拓扑中所有网络设备(AP除外)。考试现场提供运维平台登陆的用户名密码信息。 2.通过运维平台将被监控设备纳入监控范围;通过拓扑配置功能,将网络拓扑配置到平台中。...

Linux设备模型(八) - sysfs

一,sysfs目录介绍 sysfs是一个基于内存的虚拟的文件系统,有kernel提供,挂载到/sys目录下,负责以设备树的形式向user space提供直观的设备和驱动信息。 sysfs以不同的视角展示当前系统接入的设备: /sys/block 历史遗…...

C语言实现Linux下的UDP服务端和客户端

程序实现了UDP服务端和客户端&#xff0c;客户端发送消息后等待服务端响应。 udp_server.c: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <netinet/in.h> #include <netinet/ip.h> …...

Excel小技巧 (2) - 如何去除和增加前导0

1. 如何去除前导0 公式&#xff1a;SUBSTITUTE(A2,0,"")&#xff0c;然后拖动十字架&#xff0c;同步所有列数据&#xff0c;轻松搞定。 2. 如何补充前导0 公式&#xff1a;TEXT(D2,"0000000") &#xff0c;0的个数是数字的完整位数。然后拖动十字架&a…...

【GIS人必看】ArcPy脚本如何导入到ArcToolBox中(上)【建议收藏】

经常使用ArcGIS的朋友应该知道&#xff0c;ArcGIS平台可以支持非常丰富的全栈链二次开发&#xff0c;比如ArcPy脚本开发、ArcGIS Engine桌面端开发、ArcGIS AddIn插件开发、WebGIS开发、移动端GIS开发等。当然&#xff0c;这些技术本人全部精通&#xff0c;后面会给大家陆续介绍…...

AI入门笔记(三)

神经网络是如何工作的 神经网络又是如何工作的呢&#xff1f;我们用一个例子来解释。我们看下面这张图片&#xff0c;我们要识别出这些图片都是0并不难&#xff0c;要怎么交给计算机&#xff0c;让计算机和我们得出同样的结果&#xff1f;难点就在于模式识别的答案不标准&…...

Linux搭建SFTP服务器

案例&#xff1a;搭建SFTP服务器 SFTP&#xff08;SSH文件传输协议&#xff09; SFTP&#xff08;SSH文件传输协议&#xff09;是一种安全的文件传输协议&#xff0c;用于在计算机之间传输文件。它基于SSH&#xff08;安全外壳协议&#xff09;的子系统&#xff0c;提供了加密的…...

MobaXterm无法上传整个文件夹,只能上传的单个文件

问题描述&#xff1a; 本来想使用MobaXterm上传.vscode文件夹上传到服务器&#xff0c;但是选择文件夹打开后只能选择文件夹下面的子文件无法上传整个文件。 解决方案&#xff1a; 1、简单暴力 2、压缩后解压...

Android 中get请求网络数据 详细举例

请求链接 https://api.bilibili.com/x/web-interface/ranking 1.添加网络权限 依赖等 implementation com.squareup.okhttp3:okhttp:4.9.3 implementation com.google.code.gson:gson:2.8.92.写请求类network package com.example.myapplication;import android.graphics.Bi…...

每日五道java面试题之mysql数据库篇(六)

目录&#xff1a; 第一题. MySQL中InnoDB引擎的行锁是怎么实现的&#xff1f;第二题. InnoDB存储引擎的锁的算法有三种第三题. 什么是死锁&#xff1f;怎么解决&#xff1f;第四题. 数据库的乐观锁和悲观锁是什么&#xff1f;怎么实现的&#xff1f;第五题. 为什么要使用视图&a…...

Latex——多张图排列

一、方式一&#xff08;subfig 与 subfloat 配合使用&#xff09; % Need&#xff1a;\usepackage{subfig} \begin{figure}[htbp] % \setlength{\abovecaptionskip}{0.2cm} % \setlength{\belowcaptionskip}{-0.5cm} \centering\subfloat[MOT15]{\label{fig:a}\includegrap…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...