当前位置: 首页 > news >正文

[项目设计] 从零实现的高并发内存池(四)

🌈 博客个人主页Chris在Coding

🎥 本文所属专栏[高并发内存池]

❤️ 前置学习专栏[Linux学习]

 我们仍在旅途                     

目录

6.内存回收

        6.1 ThreadCache回收内存

        6.2 CentralCache回收内存

        ReleaseListToSpans

        MapObjToSpan

         6.3 PageCache回收内存

        ReleaseSpanToPageCache

回收内存测试

7.解决大内存申请释放

        7.1 申请内存

        RoundUp

        ConcurrentAlloc

        NewSpan

        7.2 释放内存

        ConcurrentFree

        ReleaseSpanToPageCache

大内存测试


6.内存回收

        6.1 ThreadCache回收内存

这是之前我们deallocate的代码:

//void ThreadCache::deallocate(void* ptr, size_t size)
//{
//	assert(ptr);
//	assert(size <= MAXSIZE);
//	// 找对映射的空闲链表桶,对象插入进入
//	size_t index = SizeTable::Index(size);
//	_freelists[index].push(ptr);
//}

这样可能潜在着这样的问题 : 随着线程不断的释放,对应自由链表的长度也会越来越长,这些内存堆积在一个ThreadCache中如果不去使用那么其实就是一种浪费,因此我们应该将这些内存还给CentralCache。这样一来,这些内存对其他线程来说也是可申请的,因此当ThreadCache某个桶当中的自由链表太长时我们应该做更多处理。

 于是我们在原来的基础上加入下面的判断:

inline void _FreeListTooLong(FreeList& list, size_t size)
{//我们从_FreeList中抽回MaxSize,返还给CentralCachevoid* start = nullptr;list.pop_range(start,list.MaxSize());CentralCache::GetInstance().ReleaseListToSpans(start, size);
}
void ThreadCache::deallocate(void* ptr, size_t size)
{assert(ptr);assert(size <= MAXSIZE);// 找对映射的自由链表桶,对象插入进入size_t index = SizeTable::Index(size);_freelists[index].push(ptr);if (_freelists[index].size() > _freelists[index].MaxSize()){//_FreeList过长了_FreeListTooLong(_freelists[index],size);}
}

这里我们选择认为,当该空闲链表的内存块数量大于该链表可以向CentralCache申请的数量时,我们就执行_FreeListTooLong的逻辑归还

因为空闲链ReleaseListToSpans表用到内存块数量,这里我们就得对之前的FreeList类进行一些改造以适应需求

class FreeList
{
public:void push(void* obj) {// ...++_size;}void push_range(void* start, void* end,size_t n){// ..._size += n;}void* pop() //头删{// ...--_size;return obj;}// ...size_t size(){return _size;}void pop_range(void*& start,size_t n){assert(n <= _size);start = _FreeList;void* end = start;for (int i = 0; i < n - 1; i++){end = *(void**)end;}_FreeList = *(void**)end;*(void**)end = nullptr;_size-=n;}
private:// ...size_t _size = 0;
};

因为这里我们改动了push_range接口,那么当时ThreadCache从CentralCache获取了actual_num个对象,剩下的actual_num-1个挂到了ThreadCache对应的桶当中的代码也会随之修改

_freelists[index].push_range(*(void**)start, end,actual_num-1);

        6.2 CentralCache回收内存

ReleaseListToSpans

void CentralCache::ReleaseListToSpans(void* start, size_t size)
{//先找到派发出_FreeList的span类//该过程中会改动span类需要加锁size_t index = SizeTable::Index(size);_spanlists[index]._mtx.lock();while (start){void* next = *(void**)start;Span* span=PageCache::GetInstance().MapObjToSpan(start);*(void**)start = span->_freeList;span->_freeList = start;span->_used--;if (span->_used == 0){_spanlists->erase(span);span->_next = nullptr;span->_prv = nullptr;span->_freeList = nullptr;_spanlists[index]._mtx.unlock();PageCache::GetInstance()._pagemtx.lock();PageCache::GetInstance().ReleaseSpanToPageCache(span);PageCache::GetInstance()._pagemtx.unlock();_spanlists[index]._mtx.lock();}start = next;}_spanlists[index]._mtx.unlock();
}
  • SizeTable::Index(size):根据对象大小确定在大小表中的索引,用于找到对应的 span 列表。
  • 锁操作:在对 span 列表进行操作时,先对其加锁 _mtx,以确保线程安全。
  • 遍历释放对象:通过循环遍历释放对象,首先获取下一个对象的指针 next,然后根据对象的地址找到其对应的 span,将当前对象插入到 span 的空闲列表 _freeList 中,并更新 span 的使用计数 _used。
  • 判断 span 是否完全空闲:如果 span 的使用计数 _used 减为 0,表示这个 span 分配出去的对象全部都已经回收回来了。在这种情况下,需要将该 span 从 span 列表 _spanlists[index] 中移除,并将其自身的指针 _next、_prev、_freeList 置空。
  • 回收 span:一旦确定要回收 span,就需要将其释放回页缓存(PageCache)中。这一步涉及到了两个锁的操作,首先释放 span 需要持有 _pagemtx 锁,以确保对页缓存的操作线程安全;同时,也需要确保释放 span 的过程是原子的,因此在释放前后都需要释放掉 _spanlists[index]._mtx 锁。

MapObjToSpan

通过内存块地址怎么找到原先的Sapn

在实现ReleaseListToSpans时,我们是默认通过MapObjToSpan()实现从内存块地址找到Span。

首先我们必须理解的是,某个页当中的所有地址除以页的大小都等该页的页号。比如我们这里假设一页的大小是100,那么地址0~99都属于第0页,它们除以100都等于0,而地址100~199都属于第1页,它们除以100都等于1。

虽然我们现在可以通过对象的地址得到其所在的页号,但是我们还是不能知道这个对象到底属于哪一个span。因为一个span管理的可能是多个页。为了解决这个问题,我们可以建立页号和span之间的映射。这里可以用C++当中的unordered_map进行实现,并且添加一个函数接口,用于让central cache获取这里的映射关系。

class PageCache
{
public:// ...Span* MapObjToSpan(void* obj);
private:// ...std::unordered_map<PAGEID,Span*> _IdToSpan;
};
Span* PageCache::MapObjToSpan(void* obj)
{PAGEID id = ((PAGEID)obj >> PAGESHIFT);std::unique_lock<std::mutex> lock(_pagemtx);auto ret = _IdToSpan.find(id);if (ret != _IdToSpan.end()){return ret->second;}else{assert(false);return nullptr;}
}

 建立映射关系

在 PageCache 类中,当分配 Span 给 CentralCache 时,需要记录下分配的 span 的页号和 span 之间的映射关系。因此,在 NewSpan 函数中,分配完 Span 后,我们会遍历该 Span 的所有页,将每个页号与该 Span 建立映射关系。

Span* PageCache::NewSpan(size_t k)
{if (!_Spanlists[k].empty()){Span* kspan = _Spanlists[k].pop_front();for (PAGEID i = 0; i < kspan->_n; i++){_IdToSpan[kspan->_pageId + i] = kspan;}return kspan;}for (size_t n = k + 1; n < NPAGES; n++){if (!_Spanlists[n].empty()){Span* nspan = _Spanlists[n].pop_front();Span* kspan = new Span;kspan->_pageId = nspan->_pageId;kspan->_n = k;nspan->_pageId += k;nspan->_n -= k;_Spanlists[nspan->_n].push_front(nspan);for (PAGEID i = 0; i < kspan->_n; i++){_IdToSpan[kspan->_pageId + i] = kspan;}return kspan;}}Span* maxspan = new Span;void* ptr = SystemAlloc(NPAGES - 1);maxspan->_pageId = (PAGEID)ptr >> PAGESHIFT;maxspan->_n = NPAGES - 1;_Spanlists[maxspan->_n].push_front(maxspan);return NewSpan(k);
}

         6.3 PageCache回收内存

Page Cache 回收内存的过程是为了释放已经被 Central Cache 使用过的 Span,并尝试将这些 Span 与其他空闲的 Span 进行合并,从而缓解内存碎片问题。

这个过程涉及以下几个关键步骤:

  • 判断 Span 是否可以合并: 首先,需要判断回收的 Span 周围是否有空闲的 Span 可以合并。这包括向前合并和向后合并两种情况。如果回收的 Span 的前后页号对应的 Span 存在且未被使用,则可以进行合并。

  • 向前合并和向后合并: 如果条件允许,就可以进行向前和向后的合并操作。向前合并就是将回收的 Span 与前一个未使用的 Span 进行合并,向后合并则是将回收的 Span 与后一个未使用的 Span 进行合并。合并的过程包括更新 Span 的起始页号和页数,并从 Page Cache 的对应双链表中移除被合并的 Span。

  • 建立映射关系: 在合并结束后,需要重新建立 Span 的页号与 Span 之间的映射关系,以便后续操作能够快速定位到对应的 Span。这包括更新合并后 Span 的首尾页号与 Span 之间的映射关系,并将合并后的 Span 挂到对应的双链表中。

  • 更新 Span 的状态: 最后,需要将合并后的 Span 标记为未被使用的状态,以便之后的分配过程能够正确识别并使用这些 Span。

通过以上步骤,Page Cache 在回收内存时不仅释放了被使用过的 Span,还尝试将空闲的 Span 进行合并,以优化内存的利用效率,并且通过建立映射关系,确保后续操作能够快速定位到对应的 Span,提高了内存回收的效率和性能。

如何判断Span是否正在使用

由于PageCache回收内存的步骤中涉及到了Span内存块的合并,在这一过程中判断Span内存块是否正在使用将很重要。但是我们不能通过Span结构当中的_used成员,来判断某个Span到底是在CentralCache还是在PageCache。因为当CentralCache刚向PageCache申请到一个Span时,这个span的_used就是等于0的,这时可能当我们正在对该Span进行切分的时候,PageCache就把这个Span拿去进行合并了。

为了避免这些问题,我们直接在最初就给Span类中新增一个成员变量用来标记这个Span内存块是否正在使用的过程中。

struct Span
{// ...bool _isused = false;
};

因此当central cache向page cache申请到一个span时,需要立即将该span的_isUse改为true。

span->_isused = true;

而当central cache将某个span还给page cache时,也就需要将该span的_isUse改成false。

span->_isused = false;

ReleaseSpanToPageCache

void PageCache::ReleaseSpanToPageCache(Span* span)
{//先判断销毁的span类型是不是大于能维护的最大值if (span->_n>NPAGES-1){//直接调用系统接口销毁void* ptr = (void*)(span->_pageId<<PAGESHIFT);SystemFree(ptr);_Spanpool.Delete(span);return;}// 对span前后的页,尝试进行合并,缓解内存碎片问题while (1){PAGEID prvid = span->_pageId - 1;Span* prvit = (Span*)_IdToSpan.get(prvid);if (prvit == nullptr|| prvit->_isused == true||(prvit->_n+span->_n)>NPAGES-1) //前页不在或在使用或合成后超过最大值{break;}span->_pageId = prvit->_pageId;span->_n += prvit->_n;_Spanlists[prvit->_n].erase(prvit);_Spanpool.Delete(prvit);}while (1){PAGEID nxtid = span->_pageId +span->_n;Span* nxtit = (Span*)_IdToSpan.get(nxtid);if (nxtit == nullptr || nxtit->_isused == true || (nxtit->_n + span->_n) > NPAGES - 1) //后页不在或在使用或合成后超过最大值{break;}span->_pageId = nxtit->_pageId;span->_n += nxtit->_n;_Spanlists[nxtit->_n].erase(nxtit);_Spanpool.Delete(nxtit);}_Spanlists[span->_n].push_front(span);span->_isused = false;//此时从span->_pageId到span->_pageId + span->_n - 1页的所有Id在_IdToSpan的映射关系还没有更新,但没必要现在更新,在newspan时,会覆盖原来的更新//现在更新头尾是防止出现合成后再被别的span合成的情况(兼容我们的前后页合并接口)_IdToSpan.set(span->_pageId,span);_IdToSpan.set(span->_pageId + span->_n - 1, span);
}
  1. 处理大于最大值的 Span: 首先,函数检查传入的 Span 的页数是否大于 NPAGES - 1,如果是的话,说明这个 Span 超过了系统能维护的最大值,那么就直接调用系统接口销毁内存,并释放 Span 对象的内存,然后返回。这个操作是为了防止系统无法管理过大的 Span 而造成的问题。

  2. 合并相邻的 Span: 接下来,函数尝试对传入的 Span 的前后页进行合并操作,从而缓解内存碎片问题。首先,通过循环向前查找前一个 Span 是否可以合并,如果找到了合适的 Span,就进行合并操作,并在合并后将该 Span 从对应的 SpanList 中删除,并释放其内存。然后,再通过循环向后查找后一个 Span 是否可以合并,同样找到合适的 Span 后进行合并操作,并释放其内存。

  3. 更新数据结构: 在合并结束后,将合并后的 Span 插入到对应的 SpanList 中,并将其标记为未使用。然后,更新 Span 的页号与 Span 之间的映射关系,以便后续操作能够快速定位到对应的 Span。

在合并 page cache 中的 span 时,需要通过页号找到对应的 span。与 central cache 不同的是,page cache 中的 span 需要建立页号与 span 之间的映射关系。在 page cache 中,只需建立一个 span 的首尾页号与该 span 之间的映射关系即可。因为在进行合并时,只需要通过一个 span 的尾页或首页找到这个 span,无需建立每个页与 span 的映射关系。

当申请 k 页的 span 时,如果将 n 页的 span 切割为一个 k 页的 span 和一个 n-k 页的 span,除了需要建立 k 页 span 中每个页与该 span 之间的映射关系外,还需要建立剩余的 n-k 页 span 的首尾页号与其间的映射关系。

Span* PageCache::NewSpan(size_t k)
{// ...for (size_t n = k + 1; n < NPAGES; n++){if (!_Spanlists[n].empty()){// .../*nspan->_pageId += k;nspan->_n -= k;*/// 存储nSpan的首位页号跟nSpan映射,方便page cache回收内存时// 进行的合并查找_IdToSpan[nspan->_pageId] = nspan;_IdToSpan[nspan->_pageId + nspan->_n - 1] = nspan;/*_Spanlists[nspan->_n].push_front(nspan);for (PAGEID i = 0; i < kspan->_n; i++){_IdToSpan[kspan->_pageId + i] = kspan;}return kspan;*/}}// ...
}

回收内存测试

void MultiThreadAlloc1()
{std::vector<void*> v;for (size_t i = 0; i < 1000; ++i){void* ptr = ConcurrentAlloc(6);v.push_back(ptr);}for (auto e : v){ConcurrentFree(e, 6);}
}
void MultiThreadAlloc2()
{std::vector<void*> v;for (size_t i = 0; i < 1000; ++i){void* ptr = ConcurrentAlloc(16);v.push_back(ptr);}for (auto e : v){ConcurrentFree(e, 16);}
}
void MultiThreadAlloc3()
{std::vector<void*> v;for (size_t i = 0; i < 1000; ++i){void* ptr = ConcurrentAlloc(256);v.push_back(ptr);}for (auto e : v){ConcurrentFree(e, 256);}
}
void MultiThreadAlloc4()
{std::vector<void*> v;for (size_t i = 0; i < 1000; ++i){void* ptr = ConcurrentAlloc(2048);v.push_back(ptr);}for (auto e : v){ConcurrentFree(e, 2048);}
}
void MultiThreadAlloc5()
{std::vector<void*> v;for (size_t i = 0; i < 1000; ++i){void* ptr = ConcurrentAlloc(66*1024);v.push_back(ptr);}for (auto e : v){ConcurrentFree(e, 66 * 1024);}
}
void TestMultiThread()
{std::thread t1(MultiThreadAlloc1);std::thread t2(MultiThreadAlloc2);std::thread t3(MultiThreadAlloc3);std::thread t4(MultiThreadAlloc4);std::thread t5(MultiThreadAlloc5);t1.join();t2.join();t3.join();t4.join();t5.join();
}
int main()
{//TLSTest();//TestAlloc();TestMultiThread();return 0;
}

这里我们简单的跑一下程序,看一下是否能稳定运行 。

7.解决大内存申请释放

        7.1 申请内存

这里我们用梳理一下之前的内存申请方式, ThreadCache是用于申请小于等于256KB的内存的,而对于大于256KB的内存,我们可以考虑直接向PageCache申请,但PageCache中最大的页也就只有128页,所以我们现在还无法实现大于128页内存的申请释放 。于是我们现在选择把大于128页的内存直接向堆上申请释放来解决这个问题。

当申请的内存大于256KB时,虽然不是从ThreadCache进行获取,但在分配内存时也是需要按页为单位向上对齐的。

RoundUp

class SizeTable
{
public:static size_t RoundUp(size_t bytes){// ...else if (bytes <= 256 * 1024){// return _RoundUp(bytes, 8 * 1024);}else{return _RoundUp(bytes, 1 << PAGESHIFT);}
};

ConcurrentAlloc

我们最初申请内存时的逻辑也会随之改变,我们就不选择走向ThreadCache申请内存的流程,直接判断完后调用Newspan接口申请页。

static void* ConcurrentAlloc(size_t size)
{if (size > MAXSIZE){//超过256KB的内存,ThreadCache中已经放不下了,直接申请Span来用size_t align_size = SizeTable::RoundUp(size);size_t kpage = align_size >> PAGESHIFT; //计算一共要去PageCache中去拿k页SpanPageCache::GetInstance()._pagemtx.lock();Span* span = PageCache::GetInstance().NewSpan(kpage);PageCache::GetInstance()._pagemtx.unlock();return (void*)(span->_pageId << PAGESHIFT);}// ...
}

NewSpan

我们在这里实现超过128页内存的申请,并且对申请的span类建立头指针的映射关系,这样便于后续销毁工作。

Span* PageCache::NewSpan(size_t k)
{if (k > NPAGES - 1){//此时申请的内存大于了1024*1024 bytes ,即1M ,超过PageCache维护的最大限制,此时我们直接去堆上申请内存void* ptr = SystemAlloc(k);Span* kspan = new Span;kspan->_n = k;kspan->_pageId = (PAGEID)ptr >> PAGESHIFT;//对申请的span类建立头指针的映射关系,便于后续销毁工作_IdToSpan[kspan->_pageId] = kspan;return kspan;}// ...
}

        7.2 释放内存

我们释放的流程总结如下:

释放内存的大小释放方式
x ≤ 256KB (32页)释放给 thread cache
32页 < x ≤ 128页释放给 page cache
x ≥ 128页释放给堆

ConcurrentFree

因此当释放对象时,我们需要先找到该对象对应的span,但是在释放对象时我们只知道该对象的起始地址。但是我们是给申请到的内存建立了span结构,并建立起始页号与该span之间的映射关系的原因。此时我们就可以通过释放对象的起始地址计算出起始页号,进而通过页号找到该对象对应的span。

static void ConcurrentFree(void* ptr, size_t size)
{if (size > MAXSIZE){Span* span = PageCache::GetInstance().MapObjToSpan(ptr);//超过256KB的内存,ThreadCache中无法维护,都是以Span类型储存并维护PageCache::GetInstance()._pagemtx.lock();PageCache::GetInstance().ReleaseSpanToPageCache(span);PageCache::GetInstance()._pagemtx.unlock();}else{assert(pTLSThreadCache);pTLSThreadCache->deallocate(ptr, size);}
}

ReleaseSpanToPageCache

因此Page Cache在回收Span时也需要进行判断,如果该span的大小是大于128页的,那么说明该span是直接向堆申请的,我们直接将这块内存释放给堆,然后将这个span结构进行delete就行了。

void PageCache::ReleaseSpanToPageCache(Span* span)
{if (span->_n > NPAGES - 1){void* ptr = (void*)(span->_pageId << PAGESHIFT);SystemFree(ptr);delete span;return;}// ...
}

大内存测试

void BigAlloc()
{void* p1 = ConcurrentAlloc(257 * 1024);ConcurrentFree(p1, 257 * 1024);void* p2 = ConcurrentAlloc(129 * 8 * 1024);ConcurrentFree(p2, 129 * 8 * 1024);
}
int main()
{//TLSTest();//TestAlloc();//TestMultiThread();BigAlloc();return 0;
}

相关文章:

[项目设计] 从零实现的高并发内存池(四)

&#x1f308; 博客个人主页&#xff1a;Chris在Coding &#x1f3a5; 本文所属专栏&#xff1a;[高并发内存池] ❤️ 前置学习专栏&#xff1a;[Linux学习] ⏰ 我们仍在旅途 ​ 目录 6.内存回收 6.1 ThreadCache回收内存 6.2 CentralCache回收内存 Rele…...

02.URL的基本知识和使用

一.认识 URL 1. 为什么要认识 URL ? 虽然是后端给我的一个地址&#xff0c;但是哪部分标记的是服务器电脑&#xff0c;哪部分标记的是资源呢&#xff1f;所以为了和服务器有效沟通我们要认识一下 2. 什么是 URL &#xff1f; 统一资源定位符&#xff0c;简称网址&#xff…...

人工智能指数报告2023

人工智能指数报告2023 主要要点第 1 章 研究与开发第 2 章 技术性能第 3 章 人工智能技术伦理第 4 章 经济第 5 章 教育第 6 章 政策与治理第 7 章 多样性第 8 章 舆论 人工智能指数是斯坦福大学以人为本的人工智能研究所&#xff08;HAI&#xff09;的一项独立倡议&#xff0c…...

Android如何对应用进行系统签名

一、使用命令 获取签名文件 从系统源码环境中获取签名相关文件&#xff1a; platform.x509.pem、platform.pk8 、signapk.jar platform.x509.pem、platform.pk8 位于 ../build/target/product/security 目录下。signapk.jar 位于 ../out/host/linux-x86/framework 目录下。 …...

【系统安全加固】Centos 设置禁用密码并打开密钥登录

文章目录 一&#xff0c;概述二&#xff0c;操作步骤1. 服务器端生成密钥2. 在服务器上安装公钥3.下载私钥到本地&#xff08;重要&#xff0c;否则后面无法登录&#xff09;4. 修改配置文件&#xff0c;禁用密码并打开密钥登录5. 重启sshd服务6. 配置xshell使用密钥登录 一&am…...

关于我在项目中封装的一些自定义指令

什么是指令 在Vue中提供了一套为数据驱动视图更为方便的操作&#xff0c;这些操作被称为指令系统。我们看到的v-来头的行内属性&#xff0c;都是指令&#xff0c;不同的指令可以完成或者实现不同的功能。 除了核心功能默认内置的指令&#xff08;v-model和v-show&#xff09;…...

react经验11:访问循环渲染的子组件内容

前有访问单个子组件的需求&#xff0c;现在进一步需要访问循环渲染中的子组件。 访问单个子组件的成员 实施步骤 子组件//child.tsx export declare type ChildInstance{childMethod:()>void } const Child(props:{value:stringonMounted?:(ref:ChildInstance)>void …...

Java开发工程师面试题(业务功能)

一、订单超时未支付自动关闭的几种实现方式。 定时任务扫描&#xff1a;在订单创建时&#xff0c;为订单创建一个定时任务&#xff0c;并设置一个超时时间。后端服务器会定期检查任务的创建时间是否超过了超时时间。如果是&#xff0c;则将订单设置为关闭状态。这种方案需要后…...

BUUCTF-Misc-百里挑一

题目链接&#xff1a;BUUCTF在线评测 (buuoj.cn) 下载附件打开是一个流量包文件&#xff1a; 全是在传图片时候的流量&#xff0c;先把图片保存出来文件–>导出对象–>HTTP–>保存到一个文件夹 然后使用kali下的exiftool找到了一半flag exiftool *|grep flag 另外一半…...

【力扣刷题练习】42. 接雨水

题目描述&#xff1a; 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 题目解答&#xff1a; class Solution {public int trap(int[] height) {int n height.length;int ans 0;if (n < 3)return…...

鸿蒙实战开发:数据交互【RPC连接】

概述 本示例展示了同一设备中前后台的数据交互&#xff0c;用户前台选择相应的商品与数目&#xff0c;后台计算出结果&#xff0c;回传给前台展示。 样例展示 基础信息 RPC连接 介绍 本示例使用[ohos.rpc]相关接口&#xff0c;实现了一个前台选择商品和数目&#xff0c;后台…...

QLC SSD:LDPC纠错算法的优化方案

随着NAND TLC和QLC出现,LDPC也在不断的优化研究,提升纠错能力。小编看到有一篇来自Microchip发布的比较详细的LDPC研究数据,根据自己的理解分析解读给大家,如有错误,请留言指正! 文档中测试LDPC(Low-Density Parity-Check)码是为了评估其在不同配置下对数据错误的有效…...

【Flutter 面试题】main()和runApp()函数在Flutter的作用分别是什么?有什么关系吗?

【Flutter 面试题】main()和runApp()函数在Flutter的作用分别是什么&#xff1f;有什么关系吗&#xff1f; 文章目录 写在前面解答补充说明 写在前面 关于我 &#xff0c;小雨青年 &#x1f449; CSDN博客专家&#xff0c;GitChat专栏作者&#xff0c;阿里云社区专家博主&…...

ChatGPT高效提问——说明提示技巧

ChatGPT高效提问——说明提示技巧 现在&#xff0c;让我们开始体验“说明提示技巧”&#xff08;IPT, Instructions Prompt Technique&#xff09;和如何用它生成来自ChatGPT的高质量的文本。说明提示技巧是一个通过向ChatGPT提供需要依据的具体的模型的说明来指导ChatGPT输出…...

从零学算法41

41.给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,0] 输出&#xff1a;3 示例 2&#xff1a; 输入&#xff1a;nums […...

FPGA高端项目:FPGA基于GS2971的SDI视频接收+OSD动态字符叠加,提供1套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本方案的SDI接收转HDMI输出应用本方案的SDI接收图像缩放应用本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收HLS图像缩放HLS多路视频拼接应用本方案的SDI接收HLS多路视频融合叠加应用…...

UML-类图详解

UML中基本概念说明 UML类图中关系连接线说明 ​ UML类图说明 号表示public、-表示表示private、#表示protected ​ UML类关系详解 泛化&#xff08;Generalization&#xff09;关系 简单的讲就是类之间的继承关系。在UML中&#xff0c;泛化关系用空心三角形实线来表示&…...

Python 快速获取PDF文件的页数

有时在处理或打印一个PDF文档之前&#xff0c;你可能需要先知道该文档包含多少页。虽然我们可以使用Adobe Acrobat这样的工具来查看页数&#xff0c;但对于程序员来说&#xff0c;编写脚本来完成这项工作会更加高效。本文就介绍一个使用Python快速获取PDF文件页数的办法。 安装…...

uniapp开发小程序使用x-www-form-urlencoded; charset=UTF-8 编码格式请求案例

使用x-www-form-urlencoded&#xff0c;header要放在前面&#xff0c;第一行位置。 uni.request({ header: { content-type: application/x-www-form-urlencoded; charsetUTF-8},url: ,method:POST, //请求方式POST\GETdata:that.loginData,success: funct…...

酷开科技服务升级,酷开系统给消费者更好的使用体验!

看电视的时候你是不是也会有选择困难症&#xff1f;不知道要看哪个&#xff1f;不知道如何操作&#xff1f;体验不够顺畅&#xff1f;现在&#xff0c;有了酷开系统9.2&#xff0c;这些通通不再是问题&#xff01;酷开科技&#xff0c;一直致力于服务升级&#xff0c;给消费者更…...

【leetcode热题】单词拆分

难度&#xff1a; 中等通过率&#xff1a; 33.7%题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict&#xff0c;判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明&#…...

【论文阅读】MC:用于语义图像分割的深度卷积网络弱监督和半监督学习

【论文阅读】MC&#xff1a;用于语义图像分割的深度卷积网络弱监督和半监督学习 文章目录 【论文阅读】MC&#xff1a;用于语义图像分割的深度卷积网络弱监督和半监督学习一、介绍二、联系工作三、方法四、实验结果 Weakly- and Semi-Supervised Learning of a Deep Convolutio…...

读书·基于RISC-V和FPGA的嵌入式系统设计·第3章

72.8051单片机的弊端和指令集架构CISC的缺点 76.RV指令集的特征&#xff08;⭐&#xff09; 特权架构和特权指令集是相关但不完全相同的概念。 特权架构&#xff08;Privileged Architecture&#xff09;指的是计算机体系结构中用于实现特权级操作的硬件和软件机制。特权架构定…...

本地项目推送到腾讯云轻量应用服务器教程(并实现本地推送远程自动更新)

将本地项目上传到腾讯云轻量应用服务器并实现后续的推送更新&#xff0c;具体步骤如下&#xff1a; 在本地项目目录下初始化 Git 仓库&#xff1a; cd 项目目录 git init将项目文件添加到 Git 仓库并提交&#xff1a; git add . git commit -m "Initial commit"在…...

MacOS安装反编译工具JD-GUI 版本需要1.8+

Java Decompiler http://java-decompiler.github.io/ 将下载下来的 jd-gui-osx-1.6.6.tar 解压&#xff0c;然后将 JD-GUI.app 文件拷贝到 Applications 应用程序目录里面 1.显示包内容 2.找到Contents/MacOS/universalJavaApplicationStub.sh 3.修改sh文件 内容修改为下面…...

计算机大数据毕业设计-基于Flask的旅游推荐可视化系统的设计与实现

基于Flask的旅游推荐可视化系统的设计与实现 编程语言&#xff1a;Python3.10 涉及技术&#xff1a;FlaskMySQL8.0Echarts 开发工具&#xff1a;PyCharm 摘要&#xff1a;以Pycharm为旅游推荐系统开发工具&#xff0c;采用B/S结构&#xff0c;使用Python语言开发旅游景点推…...

java实现pdf转word

java实现pdf转word 前言pom文件启动入口过滤器对象ConvertPdfToWordWithFlowableStructure转换实现类 前言 1.java实现pdf转word。 2.纯免费开源。 3.pdf解析完会生成word文件和图片文件夹。 4.无页码限制&#xff0c;文本类型生成到word中&#xff0c;图片生成到图片文件夹中…...

【操作系统概念】 第4章:线程

文章目录 0.前言4.1 概述4.1.1 多线程编程的优点 4.2 多线程模型4.2.1 多对一模型4.2.2 一对一模型4.2.3 多对多模型 4.3 线程库4.4 多线程问题4.4.1 系统调用fork()和exec()4.4.2 取消4.4.3 信号处理4.4.4 线程池4.4.5 线程特定数据 0.前言 第3章讨论的进程模型假设每个进程是…...

STM32/GD32——I2C通信协议

芯片选型 Ciga Device — GD32F470系列 通讯规则 I2C协议&#xff08;或称IIC&#xff09;是由飞利浦&#xff08;现在的恩智浦半导体&#xff09;公司开发的一种通用的总线协议。它使用两根线&#xff08;时钟线和数据线&#xff09;来传输数据&#xff0c;支持多个设备共享…...

Apache Paimon 使用之Creating Catalogs

Paimon Catalog 目前支持两种类型的metastores&#xff1a; filesystem metastore (default)&#xff0c;在文件系统中存储元数据和表文件。 hive metastore&#xff0c;将metadata存储在Hive metastore中。用户可以直接从Hive访问表。 1.使用 Filesystem Metastore 创建 Cat…...