当前位置: 首页 > news >正文

IJCAI23 - Continual Learning Tutorial

前言

如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。

本篇 Tutorial 主要介绍了 CL 中的一些基本概念以及一些过往的方法。


Problem Definition

Continual LearningIncremental learning 以及 Lifelong learning 属于同一概念, 其所关心的场景均为「如何在新数据持续到来的情况下更新模型?」;并且由于存储空间和隐私问题,流式数据通常不能被存储。

CL 的整体目标为最小化所有已见任务的期望损失,如下所示:

在这里插入图片描述
CL 又细分为三类( { Y t } \{\mathcal{Y}^t\} {Yt} 表示 t t t 时刻的类别标签集合, P ( Y t ) P(\mathcal{Y}^t) P(Yt) 表示类别分布, P ( X t ) P(\mathcal{X}^t) P(Xt) 表示输入数据分布):

  • Class-Incremental Learning (CIL): { Y t } ⊂ { Y t + 1 } , P ( Y t ) ≠ P ( Y t + 1 ) , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} \subset\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{Y}^t\right) \neq P\left(\mathcal{Y}^{t+1}\right),P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}{Yt+1},P(Yt)=P(Yt+1),P(Xt)=P(Xt+1)
  • Task-Incremental Learning (TIL): { Y t } ≠ { Y t + 1 } , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} \neq\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}={Yt+1},P(Xt)=P(Xt+1),测试时任务 id ( t ) \text{id}(t) id(t) 已知
  • Domain-Incremental Learning (DIL): { Y t } = { Y t + 1 } , P ( Y t ) = P ( Y t + 1 ) , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} =\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{Y}^t\right) =P\left(\mathcal{Y}^{t+1}\right),P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}={Yt+1},P(Yt)=P(Yt+1),P(Xt)=P(Xt+1)

在这里插入图片描述

与其它相关领域的区别

Multi-task Learning:(1)同时拿到所有任务的数据;(2)离线训练
在这里插入图片描述
Transfer Learning:(1)只有两个阶段;(2)并且不关注第一阶段,即 Source 的性能
在这里插入图片描述
Meta-Learning:(1)离线训练;(2)不关心 meta-train 的性能
在这里插入图片描述


CL 的一些传统做法

具体方法分类如下:
在这里插入图片描述

Data-Centric Methods

核心思想:保存一部分先前数据,在面对新任务时,可以作为训练损失的正则项 (hosting the data to replay former knowledge when learning new, or exert regularization terms with former data)

保存一部分数据的过往方法:

  • [Welling ICML’09] 计算 Embedding 空间的类中心,选取离类中心近的样本。
  • [Rebuffi et al. CVPR’17] 每个类依次贪心选取样本,使得样本 Embedding 均值逼近类中心。
  • [Shin et al. NIPS’17] [Gao and Liu ICML’23] 使用生成式模型学习每个类的数据分布。

将先前数据作为新任务训练损失正则项的一些方法:

  • [Lopez-Paz and Ranzato NIPS’17] 训练时要求模型不仅在新任务上做好,在旧任务上也要做的比之前好;模型在新任务和旧任务上的损失梯度夹角为正。

一些可能的问题:

  • [Verwimp et al. ICCV’21] Data replay 可能会遭遇 overfitting.
  • [Wu NeurIPS’18] 生成式模型也会出现灾难性遗忘。

Model-Centric Methods

核心思想:调整网络结构,或者识别网络中的重要参数并限制其变化

  • [Kirkpatrick et al. PNAS’17] 训练新任务时,限制模型参数的变化,越重要的参数权重越高

Algorithm-Centric Methods

核心思想:设计一些训练机制避免旧模型的遗忘 (design training mechanisms to prevent the forgetting of old model)

知识蒸馏 (Knowledge Distillation) 的相关方法:

  • [Li et al. TPAMI’17] 将旧模型作为 Teacher,训练时模型不仅要做好当前任务,在过去任务上需要表现得和 Teacher 尽可能相近。

模型纠正 (Model Rectify) 的相关方法:

  • 例如「降低新类输出概率 Logit」和「降低最后一层新类的权重矩阵」。

Trends of CL

最后是 CL 近几年的整体发展趋势:
请添加图片描述


参考资料

  • IJCAI23 - Continual Learning Tutorial
  • PyCIL - A Python Toolbox for Class-Incremental Learning

相关文章:

IJCAI23 - Continual Learning Tutorial

前言 如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 本篇 Tutorial 主要介绍了 CL 中的一些基本概念以及一些过往的方法。 Problem Definition Continual Learning 和 Increm…...

【YOLO v5 v7 v8 v9小目标改进】HTA:自注意力 + 通道注意力 + 重叠交叉注意力,提高细节识别、颜色表达、边缘清晰度

HTA:自注意力 通道注意力 重叠交叉注意力,提高细节识别、颜色表达、边缘清晰度 提出背景框架浅层特征提取深层特征提取图像重建混合注意力块(HAB)重叠交叉注意力块(OCAB)同任务预训练效果 小目标涨点YOLO…...

外包干了10天,技术退步明显。。。。。

先说一下自己的情况,本科生,2019年我通过校招踏入了南京一家软件公司,开始了我的职业生涯。那时的我,满怀热血和憧憬,期待着在这个行业中闯出一片天地。然而,随着时间的推移,我发现自己逐渐陷入…...

如何在Win系统本地部署Jupyter Notbook交互笔记并结合内网穿透实现公网远程使用

文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下载安装2.2 Jupyter Notebook的配置2.3 Cpolar下载安装 3.Cpolar端口设置3.1 Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 在数据分析工作中,使用最多的无疑就是各种函数、图表、…...

【自动化测试】之PO模式介绍及案例

概念 PO(Page Object)设计模式是一种面向对象( 页面对象)的设计模式,将测试对象及单个的测试步骤封装在每个Page对象以page为单位进行管理。 优点 可以使代码复用降低维护成本提高程序可读性和编写效率。可以将页面定位和业务操…...

3D-Genome | Hi-C互作矩阵归一化指南

Hi-C 是一种基于测序的方法,用于分析全基因组染色质互作。它已广泛应用于研究各种生物学问题,如基因调控、染色质结构、基因组组装等。Hi-C 实验涉及一系列生物化学反应,可能会在输出中引入噪声。随后的数据分析也会产生影响最终输出噪声&…...

【设计者模式】单例模式

文章目录 1、模式定义2、代码实现(1)双重判空加锁方式两次判空的作用?volatile 关键字的作用?构造函数私有? (2)静态内部类【推荐】(3)Kotlin中的单例模式lateinit 和 by…...

Windows7缺失api-ms-win-crt-runtime-l1-1-0.dll的解决方法

api-ms-win-crt-runtime-l1-1-0.dll是一个在Windows操作系统环境下至关重要的动态链接库文件(DLL),它是Microsoft Visual C Redistributable的一部分,负责实现C运行时库的相关功能。这个特定的DLL文件提供了大量的底层运行支持&am…...

coqui-ai/TTS 安装使用

Coqui AI的TTS是一款开源深度学习文本转语音工具,以高质量、多语言合成著称。它提供超过1100种语言的预训练模型库,能够轻松集成到各种应用中,并允许用户通过简单API进行个性化声音训练与微调。其技术亮点包括但不限于低资源适应性&#xff0…...

Spring AOP相关注解及执行顺序

Aspect(切面):用于标识一个类是切面的注解。通常与其他通知注解一起使用,定义切面类。 Pointcut(切点): 注解来定义切点,它用于描述哪些连接点将会被通知所通知。 连接点&#xff…...

C++从零开始的打怪升级之路(day44)

这是关于一个普通双非本科大一学生的C的学习记录贴 在此前,我学了一点点C语言还有简单的数据结构,如果有小伙伴想和我一起学习的,可以私信我交流分享学习资料 那么开启正题 今天分享的是关于二叉搜索树的知识点 1.二叉搜索树概念 二叉搜…...

[C++核心编程](七):类和对象——运算符重载*

目录 四则运算符重载 左移运算符重载 递增运算符重载 赋值运算符重载 关系运算符重载 函数调用运算符重载 对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型 四则运算符重载 对自定义数据类型实现四则运算(加减乘除&…...

什么是MVC和MVVM

**MVC和MVVM是两种流行的软件架构模式,它们在前端开发中被广泛采用来组织代码和管理应用程序的复杂性**。具体如下: MVC(Model-View-Controller): 1. 模型(Model):负责管理数据和业…...

物体检测-系列教程23:YOLOV5 源码解析13 (SPP层、Flatten模块、Concat模块、Classify模块)

😎😎😎物体检测-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 点我下载源码 17、SPP模块 17.1 SPP类 SPP是一种特殊的池化策略,最初在YOLOv3-SPP中被使用…...

2024.3.6每日一题

LeetCode 找出数组中的 K -or 值 题目链接:2917. 找出数组中的 K-or 值 - 力扣(LeetCode) 题目描述 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。 nums 中的 K-or 是一个满足以下条件的非负整数: 只有在 nums 中&…...

YOLOSHOW - YOLOv5 / YOLOv7 / YOLOv8 / YOLOv9 基于 Pyside6 的图形化界面

YOLOSHOW 是一个基于 PySide6(Qt for Python)开发的图形化界面应用程序,主要用于集成和可视化YOLO系列(包括但不限于YOLOv5、YOLOv7、YOLOv8、YOLOv9)的目标检测模型。YOLOSHOW 提供了一个用户友好的交互界面&#xff…...

sql高级

sql高级 SQL SELECT TOP 子句 SELECT TOP 子句用于规定要返回的记录的数目。 SELECT TOP 子句对于拥有数千条记录的大型表来说,是非常有用的。 **注意:**并非所有的数据库系统都支持 SELECT TOP 语句。 MySQL 支持 LIMIT 语句来选取指定的条数数据, O…...

更快更强,Claude 3全面超越GPT4,能归纳15万单词

ChatGPT4和Gemini Ultra被Claude 3 AI模型超越了? 3月4日周一,人工智能公司Anthropic推出了Claude 3系列AI模型和新型聊天机器人,其中包括Opus、Sonnet和Haiku三种模型,该公司声称,这是迄今为止它们开发的最快速、最强…...

devc++小游戏3.8.5

导航: Dev-c跑酷小游戏 1.0.0 devc跑酷小游戏1.2.5 devc跑酷游戏1.2.6 devc跑酷游戏2.0.0 devc跑酷游戏2.0.1 devc跑酷游戏2.4.0 devc跑酷小游戏3.5.0 更新内容 重磅回归,存档搞定!!! 每一关需要前一关已…...

Java网络通信TCP

目录 TCP两个核心类 服务端 1.用ServerSocker类创建对象并且手动指定端口号 2.accept阻塞连接服务端与客户端 3.给客户端提供处理业务方法 4.处理业务 整体代码 客户端 1.创建Socket对象,并连接服务端的ip与端口号 2.获取Socket流对象,写入数据…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...