当前位置: 首页 > news >正文

pytorch实现transformer模型

Transformer是一种强大的神经网络架构,可用于处理序列数据,例如自然语言处理任务。在PyTorch中,可以使用torch.nn.Transformer类轻松实现Transformer模型。
以下是一个简单的Transformer模型实现的示例代码,它将一个输入序列转换为一个输出序列,可以用于序列到序列的翻译任务:
示例代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
import mathclass PositionalEncoding(nn.Module):def __init__(self, d_model, dropout=0.1, max_len=5000):super().__init__()self.dropout = nn.Dropout(p=dropout)pe = torch.zeros(max_len, d_model)position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)pe = pe.unsqueeze(0).transpose(0, 1)self.register_buffer('pe', pe)def forward(self, x):x = x + self.pe[:x.size(0), :]return self.dropout(x)class TransformerModel(nn.Module):def __init__(self, input_vocab_size, output_vocab_size, d_model, nhead, num_layers, dim_feedforward, dropout=0.1):super(TransformerModel, self).__init__()self.d_model = d_modelself.nhead = nheadself.num_layers = num_layersself.dim_feedforward = dim_feedforwardself.embedding = nn.Embedding(input_vocab_size, d_model)self.pos_encoder = PositionalEncoding(d_model, dropout)encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)self.decoder = nn.Linear(d_model, output_vocab_size)self.init_weights()def init_weights(self):initrange = 0.1self.embedding.weight.data.uniform_(-initrange, initrange)self.decoder.bias.data.zero_()self.decoder.weight.data.uniform_(-initrange, initrange)def forward(self, src, src_mask=None):src = self.embedding(src) * math.sqrt(self.d_model)src = self.pos_encoder(src)output = self.transformer_encoder(src, src_mask)output = self.decoder(output)return output

在上面的代码中,我们定义了一个名为TransformerModel的模型类,它继承自nn.Module。该模型包括以下组件:

nn.Embedding:将输入序列中的每个标记转换为其向量表示。
PositionalEncoding:将序列中每个标记的位置编码为向量。
nn.TransformerEncoder:将编码后的输入序列转换为输出序列。
nn.Linear:将Transformer的输出转换为最终输出序列。
可以根据自己的需求修改TransformerModel类中的超参数,例如输入和输出词汇表大小、嵌入维度、Transformer层数、隐藏层维度等等。使用该模型进行训练时,您需要定义损失函数和优化器,并使用PyTorch的标准训练循环进行训练。

在 Transformer 中,Positional Encoding 的作用是将输入序列中的位置信息嵌入到向量空间中,从而使得每个位置对应的向量是唯一的。这个实现中,Positional Encoding 采用了公式:

PE(pos,2i)=sin⁡(pos/100002i/dmodel)\text{PE}{(pos, 2i)} = \sin(pos / 10000^{2i/d{\text{model}}})PE(pos,2i)=sin(pos/100002i/dmodel)

PE(pos,2i+1)=cos⁡(pos/100002i/dmodel)\text{PE}{(pos, 2i+1)} = \cos(pos / 10000^{2i/d{\text{model}}})PE(pos,2i+1)=cos(pos/100002i/dmodel)

其中 pos 表示输入序列中的位置,i 表示向量的维度。最终得到的 Positional Encoding 矩阵被添加到输入序列的嵌入向量中。

相关文章:

pytorch实现transformer模型

Transformer是一种强大的神经网络架构,可用于处理序列数据,例如自然语言处理任务。在PyTorch中,可以使用torch.nn.Transformer类轻松实现Transformer模型。 以下是一个简单的Transformer模型实现的示例代码,它将一个输入序列转换为…...

【懒加载数据 Objective-C语言】

一、咱们就开始进行懒加载 1.懒加载发现,每一个字典,是不是就是四个键值对组成的: 1)answer:String,中国合伙人, 2)icon:String,movie_zghhr, 3)title:String,创业励志电影, 4)options:Array,21 items 前三个都是String类型,最后是不是Array类型, 所…...

人脸网格/人脸3D重建 face_mesh(毕业设计+代码)

概述 Face Mesh是一个解决方案,可在移动设备上实时估计468个3D面部地标。它利用机器学习(ML)推断3D面部表面,只需要单个摄像头输入,无需专用深度传感器。利用轻量级模型架构以及整个管道中的GPU加速,该解决…...

JMeter 控制并发数

文章目录一、误区二、正确设置 JMeter 的并发数总结没用过 JMeter 的同学,可以先过一遍他的简单使用例子 https://blog.csdn.net/weixin_42132143/article/details/118875293?spm1001.2014.3001.5501 一、误区 在使用 JMeter 做压测时,大家都知道要这么…...

git常用命令汇总

Git 是一种分布式版本控制系统,它具有以下优点: 分布式:每个开发者都可以拥有自己的本地代码仓库,不需要连接到中央服务器,这样可以避免单点故障和网络延迟等问题。 非线性开发:Git 可以支持多个分支并行开…...

【2023】华为OD机试真题Java-题目0226-寻找相似单词

寻找相似单词 题目描述 给定一个可存储若干单词的字典,找出指定单词的所有相似单词,并且按照单词名称从小到大排序输出。单词仅包括字母,但可能大小写并存(大写不一定只出现在首字母)。 相似单词说明:给定一个单词X,如果通过任意交换单词中字母的位置得到不同的单词Y,…...

【项目管理】晋升为领导后,如何开展工作?

兵随将转,作为管理者,你可以不知道下属的短处,却不能不知道下属的长处。晋升为领导后,如何开展工作呢? 金九银十,此期间换工作的人不在少数。有几位朋友最近都换了公司,职位得到晋升&#xff0c…...

JAVA开发(Spring Gateway 的原理和使用)

在springCloud的架构中,业务服务都是以微服务来划分的,每个服务可能都有自己的地址和端口。如果前端或者说是客户端直接去调用不同的微服务的话,就要配置不同的地址。其实这是一个解耦和去中心化出现的弊端。所以springCloud体系中&#xff0…...

踩坑:解决npm版本升级报错,无法安装node-sass的问题

npm版本由于经常更新,迁移前端项目时经常发现报错安装不上。 比如,项目经常使用的sass模块,可能迁移的时候就发现安装不了。 因为node-sass 编译器是通过 C 实现的。在 Node.js 中,采用 gyp 构建工具进行构建 C 代码&#xff0c…...

xFormers安装使用

xFormers是一个模块化和可编程的Transformer建模库,可以加速图像的生成。 这种优化仅适用于nvidia gpus,它加快了图像生成,并降低了vram的使用量,而成本产生了非确定性的结果。 下载地址: https://github.com/faceb…...

React—— hooks(一)

🧁个人主页:个人主页 ✌支持我 :点赞👍收藏🌼关注🧡 文章目录⛳React Hooks💸useState(保存组件状态)🥈useEffect(处理副作用)🔋useCallback(记忆函数&#…...

Ubuntu20.04下noetic版本ros安装时rosdep update失败解决方法【一行命令】

一、问题: 安装完ros后,需要执行sudo rosdep init,但是在没有全局科学上网的前提下,执行sudo rosdep init势必会报错: ERROR: cannot download default sources list from: https://raw.githubusercontent.com/ros/r…...

Vue2.0开发之——购物车案例-Footer组件封装-计算商品的总价格(51)

一 概述 App.vue中计算勾选商品的总价格定义子组件Footer中的商品总价格将App.vue中商品的总价格传递给Footer显示 二 App.vue中计算勾选商品的总价格 2.1 商品总价格的计算逻辑 所有勾选商品的价格*数量 2.2 App.vue中通过计算属性计算总价格 通过计算属性计算总价格 co…...

德鲁特金属导电理论(Drude)

德鲁特模型的重要等式 首先我们建立德鲁特模型的重要等式 我们把原子对于电子的阻碍作用,用一个冲量近似表示出来 在式子 首先定义一个等效加速度 由于 我们可以得到电导率的微观表达式 在交流电环境中 电场的表达式 借鉴上一问的公式 我们可以列出这样的表达式…...

(十一)python网络爬虫(理论+实战)——html解析库:BeautfulSoup详解

系列文章: python网络爬虫专栏 目录 序言 本节学习目标 特别申明...

四轮两驱小车(五):蓝牙HC-08通信

前言: 在我没接触蓝牙之前,我觉得蓝牙模块应用起来应该挺麻烦,后来发觉这个蓝牙模块的应用本质无非就是一个串口 蓝牙模块: 这是我从某宝上买到的蓝牙模块HC-08,价格还算可以,而且可以适用于大多数蓝牙调试…...

华为OD机试题 - 对称美学(JavaScript)| 机考必刷

华为OD机试题 最近更新的博客使用说明本篇题解:对称美学题目输入输出示例一输入输出说明示例二输入输出备注Code解题思路华为OD其它语言版本最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典...

Web Spider案例 网洛克 第四题 JSFuck加密 练习(八)

声明 此次案例只为学习交流使用,抓包内容、敏感网址、数据接口均已做脱敏处理,切勿用于其他非法用途; 文章目录声明一、资源推荐二、逆向目标三、抓包分析 & 下断分析逆向3.1 抓包分析3.2 下断分析逆向拿到混淆JS代码3.3 JSFuck解决方式…...

【JavaScript速成之路】JavaScript数组

📃个人主页:「小杨」的csdn博客 🔥系列专栏:【JavaScript速成之路】 🐳希望大家多多支持🥰一起进步呀! 文章目录前言1,初识数组1.1,数组1.2,创建数组1.3&…...

路由传参含对象数据刷新页面数据丢失

目录 一、问题描述 二、 解决办法 一、问题描述 【1】众所周知,在veu项目开发过程中,我们常常会用到通过路由的方式在页面中传递数据。但是用到this.$route.query.ObjectData的页面,刷新后会导致this.$route.query.ObjectData数据丢失。 …...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...