基于SpringBoot+Vue+ElementUI+Mybatis前后端分离管理系统超详细教程(五)——多条件搜索并分页展示
前后端数据交互
书接上文,我们上节课通过前后端数据交互实现了分页查询和单条件搜索分页查询的功能,最后留了个小尾巴,就是把其他两个搜索条件(email,address)也加进来,实现多条件搜索并分页展示。这节课我们一起来完善一下。
完成本节课的内容将会实现以下功能:
搜索框内输入的是0~N个条件时都能进行数据查询并分页展示。
如下图:我只输入 树 或者 qq.com 或者 园 其中任意一个条件都能进行查询 ,或者我什么条件也不输入点击搜索他查询全部数据。

多条件搜索并分页展示
(一)后端代码
1、UserMapper类
注意:注解方式下该写的注解都不要落下,否则后面报奇奇怪怪找不到某个参数的错误!!!!
@Select("select * from sys_user where username like #{userName} and email like #{email} and address like #{address} limit #{pageNum},#{pageSize}")List<User> selectPage(@Param("pageNum") Integer pageNum,@Param("pageSize") Integer pageSize,@Param("userName") String userName,@Param("email") String email,/*新增参数*/@Param("address") String address/*新增参数*/);//查询数据总条数接口及sql@Select("select count(*) from sys_user where username like #{userName} and email like #{email} and address like #{address}")Integer selectTotal(@Param("userName") String userName,@Param("email") String email,@Param("address") String address);
2、UserSevice类
如下图稍作修改,增加两个参数
3、UserController类
如下图稍作修改,增加两个参数,记得注解要加好。

(二)前端代码
1、按下图进行双向绑定
(三)运行项目(以下均为模糊查询)
1、仅传一个参数:”树“

2、传2个参数

3、传3个参数

4、一个参数也不传
查询了全部数据
相关文章:
基于SpringBoot+Vue+ElementUI+Mybatis前后端分离管理系统超详细教程(五)——多条件搜索并分页展示
前后端数据交互 书接上文,我们上节课通过前后端数据交互实现了分页查询和单条件搜索分页查询的功能,最后留了个小尾巴,就是把其他两个搜索条件(email,address)也加进来,实现多条件搜索并分页展示。这节课我…...
鸿蒙实战开发Camera组件:【相机】
相机组件支持相机业务的开发,开发者可以通过已开放的接口实现相机硬件的访问、操作和新功能开发,最常见的操作如:预览、拍照和录像等。 基本概念 拍照 此功能用于拍摄采集照片。 预览 此功能用于在开启相机后,在缓冲区内重复采集…...
政安晨:【深度学习处理实践】(三)—— 处理时间序列的数据准备
在深度学习中,对时间序列的处理主要涉及到以下几个方面: 序列建模:深度学习可以用于对时间序列进行建模。常用的模型包括循环神经网络(Recurrent Neural Networks, RNN)和长短期记忆网络(Long Short-Term M…...
PCL不同格式点云读取速度(Binary和ASCII )
首先说明一点:Binary(二进制)格式点云文件进行读取时要比Ascll码格式点云读取时要快的多,尤其是对于大型的点云文件,如几百万、甚至几千万个点云的情况下。 今天遇到了一种情况,在写项目的时候进行点云读取,读取的时候…...
Neo4J图数据库入门示例
前言 - Neo4j和MySQL的区别 Neo4j 和 MySQL 是两种不同类型的数据库,它们在数据模型、用途、性能和查询语言等方面有着显著的区别。以下是它们的主要区别: 数据模型: Neo4j 是一种图数据库,它使用图数据模型来存储和查询数据。在…...
牛客每日一题之 二维前缀和
题目介绍: 题目链接:【模板】二维前缀和_牛客题霸_牛客网 先举两个简单的例子,来帮大家理解题目,注意理解二维前缀和要先要一维前缀和的基础,不了解的可以看我上一篇博客。 若x11,y11, x23, y2 3,这是要…...
动态规划 Leetcode 70 爬楼梯
爬楼梯 Leetcode 70 学习记录自代码随想录 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到…...
(未解决)macOS matplotlib 中文是方框
reference: Mac OS系统下实现python matplotlib包绘图显示中文(亲测有效)_mac plt 中文值-CSDN博客 module ‘matplotlib.font_manager‘ has no attribute ‘_rebuild‘解决方法_font_manager未解析-CSDN博客 # 问题描述(笑死 显而易见 # solve 找到…...
深入探讨C#中的递归算法
一、什么是递归算法? 递归是指一个函数或方法在执行过程中调用自身的情况。递归算法是编程中常见的一种解决问题的方法。它将一个问题分解成一个或多个与原问题相似但规模更小的子问题,然后通过解决这些子问题来解决原问题。递归算法通常用于解决重复性的…...
三款顶级开源RAG (检索增强生成)工具:Verba、Unstructured 和 Neum
三款顶级开源RAG (检索增强生成)工具:Verba、Unstructured 和 Neum 概述 随着企业对话式数据处理需求的提升,面临的挑战是数据隐私性和缺乏企业级解决方案。虽然类似LangChain能在短时间内构建RAG应用,但忽视了文档解析、多来源数据ETL、批量…...
VC++、MFC中操作excel时,CRange中get_EntireRow()和get_EntireColumn()函数的用法及区别是什么?
在VC和MFC中操作Excel时,通过COM接口与Excel交互时,CRange 对象(或更准确地说是 Excel::Range 对象)代表一个单元格范围。CRange 类提供了一系列方法来获取或操作这个范围内的单元格。其中,get_EntireRow() 和 get_Ent…...
npm 操作报错记录1- uninstall 卸载失效
npm 操作报错记录1- uninstall 卸载失效 1、问题描述 安装了包 vue/cli-plugin-eslint4.5.0 vue/eslint-config-prettier9.0.0 但是没有使用 -d ,所以想重新安装,就使用 uninstall 命令卸载,结果卸载了没反应,也没有报错…...
openCV保存图像
保存图像 //保存为png透明通道vector<int>opts;opts.push_back(IMWRITE_PAM_FORMAT_RGB_ALPHA);imwrite("D:/img_bgra.png", img, opts);//保存为单通道灰度图像img cv::imread(imagePath.toStdString(), IMREAD_GRAYSCALE);vector<int> opts_gray;opts…...
mac 配置.bash_profile不生效问题
1、问题描述 mac系统中配置了环境变量只能在当前终端生效,切换了终端就无效了,查了下问题所在。mac系统会预装一个终极shell - zsh,环境变量读取在 .zshrc 文件下。 2、解决方案 1、切换终端到bash 切换终端到bash chsh -s /bin/bash 切换终端…...
【Cesium for Supermap】S3MTiles图层box裁剪
效果图: 代码: let viewer new Cesium.Viewer(cesiumContainer);// 添加SuperMap iServer发布的S3M缓存服务let promise viewer.scene.addS3MTilesLayerByScp("http://www.supermapol.com/realspace/services/3D-BIMbuilding/rest/realspace/data…...
PAT部分题目相关知识点——python
python中的整除 在Python中,整除(也称为地板除)可以使用**//**运算符来实现。当使用//运算符时,结果将是一个整数,它表示除法运算的整数部分,舍去任何小数部分。 示例: # 使用整除运算符 // …...
Redis核心数据结构之字典(二)
字典 解决键冲突 当有两个或以上数量的键被分配到了一个哈希表数组的同一个索引上面,我们称这些键发生了冲突(collision)。 Redis的哈希表使用链地址法(separate chaining)来解决键冲突,每个哈希表节点都有一个next指针,多个哈希表节点可以…...
拯救行动(BFS)
公主被恶人抓走,被关押在牢房的某个地方。牢房用 N \times M (N, M \le 200)NM(N,M≤200) 的矩阵来表示。矩阵中的每项可以代表道路()、墙壁(#)、和守卫(x)。 英勇的骑士(r…...
985硕的4家大厂实习与校招经历专题分享(part2)
我的个人经历: 985硕士24届毕业生,实验室方向:CV深度学习 就业:工程-java后端 关注大模型相关技术发展 校招offer: 阿里巴巴 字节跳动 等10 研究生期间独立发了一篇二区SCI 实习经历:字节 阿里 京东 B站 (只看大厂,面试…...
【NR技术】 3GPP支持无人机的关键技术以及场景
1 背景 人们对使用蜂窝连接来支持无人机系统(UAS)的兴趣浓厚,3GPP生态系统为UAS的运行提供了极好的好处。无处不在的覆盖范围、高可靠性和QoS、强大的安全性和无缝移动性是支持UAS指挥和控制功能的关键因素。与此同时,监管机构正在调查安全和性能标准以及…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
