当前位置: 首页 > news >正文

EI级 | Matlab实现GCN基于图卷积神经网络的数据多特征分类预测

EI级 | Matlab实现GCN基于图卷积神经网络的数据多特征分类预测

目录

    • EI级 | Matlab实现GCN基于图卷积神经网络的数据多特征分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.GCN基于图卷积神经网络的数据分类预测 Matlab2023

2.多输入单输出的分类预测,邻接矩阵为不同特征之间的相关系数,不同特征被视作节点,以此输入进GCN中!

图卷积神经网络(Graph Convolutional Networks,GCN)是一种用于处理图结构数据的深度学习模型。它扩展了传统卷积神经网络(CNN)在图数据上的应用。

GCN的目标是学习节点的表示,以便用于节点分类、图分类等任务。在节点分类问题中,给定一个带有标签的图,GCN通过学习节点的表示来预测未标记节点的标签。

对于多特征分类预测,GCN可以通过以下步骤进行:

构建图结构:首先,将数据表示为图结构,其中节点表示样本,边表示节点之间的关系。例如,可以使用邻接矩阵或邻接表来表示图。

特征表示:每个节点可能具有多个特征。将这些特征表示为节点的初始特征向量。可以使用传统的特征提取方法或者其他深度学习模型来获取节点的初始特征表示。

图卷积层:GCN通过多个图卷积层来逐步更新节点的表示。在每一层中,GCN将节点的特征与其邻居节点的特征进行聚合,并应用一个非线性激活函数。这样可以融合节点自身的特征以及与其相关联的邻居节点的特征。

分类预测:在最后一层的节点表示上,可以应用全连接层或其他分类器来进行节点的分类预测。通常使用softmax激活函数将节点表示映射到类别概率分布上。

训练:使用标注数据集进行GCN的训练。可以使用交叉熵损失函数来度量预测结果和真实标签之间的差异,并使用反向传播算法来更新模型参数。

GCN的性能很大程度上依赖于图的结构和节点特征的表示。因此,在构建图和设计节点特征表示时需要仔细考虑。此外,GCN的训练需要大量的标注数据和计算资源。
在这里插入图片描述

程序设计

  • 完整程序和数据资源私信博主回复Matlab实现GCN基于图卷积神经网络的数据多特征分类预测
% Channel relations
adjacency = zeros(numChannels,numChannels);
for i = 1:numChannelstopkInd = zeros(1,topKNum);scoreNodeI = score(i,:);% Make sure that channel i is not in its own candidate setscoreNodeI(i) = NaN;for j = 1:topKNum[~, ind] = max(scoreNodeI);topkInd(j) = ind;scoreNodeI(ind) = NaN;endadjacency(i,topkInd) = 1;
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/124864369
[2] https://blog.csdn.net/kjm13182345320/article/details/127896974?spm=1001.2014.3001.5502

相关文章:

EI级 | Matlab实现GCN基于图卷积神经网络的数据多特征分类预测

EI级 | Matlab实现GCN基于图卷积神经网络的数据多特征分类预测 目录 EI级 | Matlab实现GCN基于图卷积神经网络的数据多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.GCN基于图卷积神经网络的数据分类预测 Matlab2023 2.多输入单输出的分类预测&#xf…...

贪心算法介绍

贪心算法是一种在求解问题时总是做出在当前看来是最好的选择的算法。它不从整体最优上加以考虑,所做出的选择只是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性…...

前端常用数据结构

前端常用数据结构 前端常用数据结构数据结构数组栈队列链表单向链表双向链表树前端常用数据结构 什么是数据结构常用的数据结构 JavaScript 如何实现这些数据结构实际场景数据结构 所谓数据结构,是在计算机中组织、管理和存储数据的一种方式。 🙋:你知道哪些数据结构? …...

java设计模式之——单例模式

一:什么是单例模式? 构造函数private之后,还需要提供一个方法,要保证只能初始化一个单例对象,并且需要考虑线程安全的问题。 二:单例模式多种写法? 具体到写法上,主要有5种&#…...

深入理解计算机系统学习笔记

1.1异常处理 处理器中很多事情都会导致异常控制流,此时,程序执行的正常流程被破坏掉。异常可以由程序执行从内部产生,也可以由某个外部信号从外部产 生。 我们的指令集体系结构包括三种不同的内部产生的异常: l)halt指令&#…...

Linux-进程信号

目录 概念信号产生信号注册信号注销信号处理实例 信号的基本应用 概念 进程信号: 概念:信号就是软件中断。信号就是用于向进程通知某个事件的产生,打断进程当前操作,去处理这个事件。 linux中信号的种类:使用kill -l命…...

Linux服务器安装jdk

背景: 安装JDK是我们java程序在服务器运行的必要条件,下面描述几个简单的命令就可再服务器上成功安装jdk 命令总览: yum update -y yum list | grep jdk yum -y install java-1.8.0-openjdk java -version 1.查看可安装版本 yum list | grep jdk 2.如果查不到可先进行 yum upd…...

基于 HBase Phoenix 构建实时数仓(2)—— HBase 完全分布式安装

目录 一、开启 HDFS 机柜感知 1. 增加 core-site.xml 配置项 2. 创建机柜感知脚本 3. 创建机柜配置信息文件 4. 分发相关文件到其它节点 5. 重启 HDFS 使机柜感知生效 二、主机规划 三、安装配置 HBase 完全分布式集群 1. 在所有节点上配置环境变量 2. 解压、配置环境…...

equals()与==的区别

在Java中 可以对基本类型进行比较,比较的是值是否相等 也可以对引用类型(对象)进行比较,比较的是引用变量所指向的空间地址 public static void main(String[] args) {int a 10;int b 10;System.out.println(ab);//true// 基本类型比较,比较值是否相等String s1 new Stri…...

什么是数据采集与监视控制系统(SCADA)?

SCADA数据采集是一种用于监控和控制工业过程的系统。它可以实时从现场设备获得数据并将其传输到中央计算机,以便进行监控和控制。SCADA数据采集系统通常使用传感器、仪表和控制器收集各种类型的数据,例如温度、压力、流量等,然后将这些数据汇…...

基于SpringBoot+Vue+ElementUI+Mybatis前后端分离管理系统超详细教程(五)——多条件搜索并分页展示

前后端数据交互 书接上文,我们上节课通过前后端数据交互实现了分页查询和单条件搜索分页查询的功能,最后留了个小尾巴,就是把其他两个搜索条件(email,address)也加进来,实现多条件搜索并分页展示。这节课我…...

鸿蒙实战开发Camera组件:【相机】

相机组件支持相机业务的开发,开发者可以通过已开放的接口实现相机硬件的访问、操作和新功能开发,最常见的操作如:预览、拍照和录像等。 基本概念 拍照 此功能用于拍摄采集照片。 预览 此功能用于在开启相机后,在缓冲区内重复采集…...

政安晨:【深度学习处理实践】(三)—— 处理时间序列的数据准备

在深度学习中,对时间序列的处理主要涉及到以下几个方面: 序列建模:深度学习可以用于对时间序列进行建模。常用的模型包括循环神经网络(Recurrent Neural Networks, RNN)和长短期记忆网络(Long Short-Term M…...

PCL不同格式点云读取速度(Binary和ASCII )

首先说明一点:Binary(二进制)格式点云文件进行读取时要比Ascll码格式点云读取时要快的多,尤其是对于大型的点云文件,如几百万、甚至几千万个点云的情况下。 今天遇到了一种情况,在写项目的时候进行点云读取,读取的时候…...

Neo4J图数据库入门示例

前言 - Neo4j和MySQL的区别 Neo4j 和 MySQL 是两种不同类型的数据库,它们在数据模型、用途、性能和查询语言等方面有着显著的区别。以下是它们的主要区别: 数据模型: Neo4j 是一种图数据库,它使用图数据模型来存储和查询数据。在…...

牛客每日一题之 二维前缀和

题目介绍: 题目链接:【模板】二维前缀和_牛客题霸_牛客网 先举两个简单的例子,来帮大家理解题目,注意理解二维前缀和要先要一维前缀和的基础,不了解的可以看我上一篇博客。 若x11,y11, x23, y2 3,这是要…...

动态规划 Leetcode 70 爬楼梯

爬楼梯 Leetcode 70 学习记录自代码随想录 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到…...

(未解决)macOS matplotlib 中文是方框

reference: Mac OS系统下实现python matplotlib包绘图显示中文(亲测有效)_mac plt 中文值-CSDN博客 module ‘matplotlib.font_manager‘ has no attribute ‘_rebuild‘解决方法_font_manager未解析-CSDN博客 # 问题描述(笑死 显而易见 # solve 找到…...

深入探讨C#中的递归算法

一、什么是递归算法? 递归是指一个函数或方法在执行过程中调用自身的情况。递归算法是编程中常见的一种解决问题的方法。它将一个问题分解成一个或多个与原问题相似但规模更小的子问题,然后通过解决这些子问题来解决原问题。递归算法通常用于解决重复性的…...

三款顶级开源RAG (检索增强生成)工具:Verba、Unstructured 和 Neum

三款顶级开源RAG (检索增强生成)工具:Verba、Unstructured 和 Neum 概述 随着企业对话式数据处理需求的提升,面临的挑战是数据隐私性和缺乏企业级解决方案。虽然类似LangChain能在短时间内构建RAG应用,但忽视了文档解析、多来源数据ETL、批量…...

python打卡day49

知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...