当前位置: 首页 > news >正文

背包问题算法

背包问题算法

  • 0-1背包问题
    • 二维数组
    • 一维数组
  • 完全背包问题
    • 二维数组
    • 一维数组
  • 多重背包问题
    • 一维数组

0-1背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多为1

二维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量
n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [[0] * (c + 1) for _ in range(n + 1)]
for i in range(1, n + 1):for j in range(1, c + 1): # 正向if j >= w[i]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i])else:dp[i][j] = dp[i - 1][j]for rows in dp:print(rows)
print('最大value:', dp[n][c])

一维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [0] * (c + 1)
for i in range(1, n + 1):for j in range(c, 0, -1): # 逆向if j >= w[i]:dp[j] = max(dp[j], dp[j - w[i]] + v[i])print(dp)
print('最大value:', dp[c])

完全背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多不限

二维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量n = len(w)
w.insert(0, 0)
v.insert(0, 0)dp = [[0] * (c + 1) for _ in range(n + 1)]for i in range(1, n + 1):for j in range(1, c + 1): # 正向if j >= w[i]:dp[i][j] = max(dp[i - 1][j], dp[i][j - w[i]] + v[i])else:dp[i][j] = dp[i - 1][j]
for values in dp:print(values)
print('最大value:', dp[n][c])

一维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量n = len(w)w.insert(0, 0)
v.insert(0, 0)dp = [0] * (c + 1)for i in range(1, n + 1):for j in range(0, c + 1): # 正向if j >= w[i]:dp[j] = max(dp[j], dp[j - w[i]] + v[i])print(dp)
print('最大value:', dp[c])

多重背包问题

问题:背包的容量为10,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多分别为[2, 1, 2, 1]

一维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]
counts = [2, 1, 2, 1]  # 数量
c = 10  # 最大容量
n = len(w)w.insert(0, 0)
v.insert(0, 0)
counts.insert(0, 0)dp = [0] * (c + 1)for i in range(1, n + 1):for j in range(c, 0, -1): # 逆向for k in range(1, counts[i] + 1):if j >= k * w[i]:dp[j] = max(dp[j], dp[j - k * w[i]] + v[i])print(dp)
print('最大value:', dp[c])

相关文章:

背包问题算法

背包问题算法 0-1背包问题二维数组一维数组 完全背包问题二维数组一维数组 多重背包问题一维数组 0-1背包问题 问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少…...

echarts柱状图可鼠标左击出现自定义弹框,右击隐藏弹框并阻止默认右击事件

每项x轴数据对应有两条柱图和一条阴影效果是学习其它博客得到的效果,这个是学习的原文链接:echarts两个合并柱体(普通柱状图象形柱图)共享一个柱体阴影 因为这次情况比较特殊,不仅需要自定义弹框内容,而且…...

存算一体成为突破算力瓶颈的关键技术?

大模型的训练和推理需要高性能的算力支持。以ChatGPT为例,据估算,在训练方面,1746亿参数的GPT-3模型大约需要375-625台8卡DGX A100服务器训练10天左右,对应A100 GPU数量约3000-5000张。 在推理方面,如果以A100 GPU单卡…...

Pytorch_1_基本语法

一、Pytorch的基本元素操作 1.引入torch from __future__ import print_function import torch 2.创建矩阵 x torch.empty(5,3) print(x) 3.输出结果: tensor([[7.9191e34, 1.1259e24, 1.2359e-42], [4.0824e-40, 1.1379e-35, 2.5353e30], [8.…...

2024上海国际玻璃纤维及新材料展览会

2024上海国际玻璃纤维及新材料展览会 时间:2024年12月18~20日 地点:上海新国际博览中心 ◆ 》》》展会概况: 玻璃纤维是一种性能优异的无机非金属材料,比有机纤维耐温高,不燃,抗腐&#xff…...

云计算项目九:K8S安装

K8S安装 Kube-master安装 按照如下配置准备云主机 防火墙相关配置:禁用selinux,禁用swap,且在firewalld-*。上传kubernetes.zip 到跳板机 配置yum仓库(跳板机) 跳板机主机配置k8s软件源服务端 [rootjs ~]# yum -y…...

sign加密方法生成

1. 引入包的问题 2. 原因 .pycrypto、pycrytodome和crypto是一个东西,crypto在python上面的名字是pycrypto,它是一个第三方库,但是已经停止更新 3. 解决方法 --直接安装:pip install pycryptodome 3.但是,在使用的时…...

【Linux】编译器-gcc/g++使用

个人主页 : zxctscl 文章封面来自:艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 初见gcc和g3. 程序的翻译过程3.1 预处理3.1.1 宏替换 去注释 头文件展开3.1.2 条件编译 3.2 编译3.3 汇编3.4 链接 4. 链接4.1 动态链接4.2 静态链接 1. 前言 在之…...

Python 中的 filter() 函数:筛选可迭代对象元素

在 Python 中,filter() 函数是一个非常有用的内置函数,用于根据指定条件过滤可迭代对象中的元素。本文将深入探讨 filter() 函数的用法、工作原理以及常见应用场景,以帮助大家更好地理解和运用这个函数。 什么是 filter() 函数? …...

Java高频面试之并发篇

有需要互关的小伙伴,关注一下,有关必回关,争取今年认证早日拿到博客专家 并行和并发有什么区别? 并行是同时执行多个任务,而并发是多个任务在一段时间内交替执行。并行(Parallel)是指同时执行多个任务或操作,通过同时…...

docker 运行异构镜像

概述 关于docker镜像在不同的cpu架构下运行报错的解决办法,作者踩坑验证,在此分享经验 某次工作遇到需要银行内部部署docker镜像,由于行内已经开始走信创的路线,使用鲲鹏系统,arm架构,记过就遇到了standa…...

练习3-8 查询水果价格

探索--题目集索引 给定四种水果,分别是苹果(apple)、梨(pear)、桔子(orange)、葡萄(grape),单价分别对应为3.00元/公斤、2.50元/公斤、4.10元/公斤、10.20元…...

PTA 对于下列程序,正确的是() 。void f(int *p){ *p = 5;}int main(void){ int a, *p; a = 10;

对于下列程序,正确的是() 。 void f(int *p) {*p 5; } int main(void) {int a, *p;a 10;p &a;f(p);printf(“%d”, (*p));return 0; }A.5 B.6 C.10 D.11 答:A 解析:这里考察当是指针作为函数的参数。这里将 p …...

【银河商学】大蓝短视频学习02——流量突围实战

【银河商学】大蓝短视频学习02——流量突围实战 内容大纲 找对标找准你的"竞争对手" 定形式选定适合你的视频形式 做内容选题决定命运 2s上热门 一、找对标 1. 为什么要找对标 标准答案,少走弯路99%的问题,都有标准答案。 找个懂得人问一问 秒上热门,快速起号预…...

Android 获取Sms

Android 获取Sms 本篇文章记录下android下获取短信列表. 1: 申请权限 <uses-permission android:name"android.permission.READ_SMS" />2: 获取短信内容列表 private void readSms() {String[] projection {"_id", "address", "b…...

【Linux】cpp-httplib库

目录 升级gcc版本 下载cpp-httplib的zip安装包&#xff0c;上传到服务器 ​编辑 简单使用 首先打开gittee,搜索cpp-httplib,选择其中一个即可 也可以点下方链接 cpp-httplib库&#xff1a;cpp-httplib: cpp-httplib (gitee.com) 注意&#xff1a;cpp-httplib在使用的时候需…...

全网最最最详细centos7如何安装docker教程

在CentOS 7上安装Docker主要包括以下步骤&#xff1a; 1. 卸载旧版本的Docker 首先&#xff0c;需要确保系统上没有安装旧版本的Docker。可以通过以下命令来卸载它们&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-late…...

【C++专栏】C++入门 | 函数重载、引用、内联函数

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;C专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ C入门 | 函数重载、引用、内联函数 文章编号&#xff1a;C入门 / 02 文…...

html--彩虹爱心

文章目录 js内容cssreset.min.cssstyle.css html内容 js内容 const colors ["#e03776","#8f3e98","#4687bf","#3bab6f","#f9c25e","#f47274"]; const SVG_NS http://www.w3.org/2000/svg; const SVG_XLINK &q…...

基于Kronig-Penney能带模型的MATLAB求解与仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于Kronig-Penney能带模型的MATLAB求解与仿真.综合利用 MATLAB提供的求解常微分方程、矩阵行列式、代数表达式化简及绘图等函数 ,可使 Kronig-Penney能带模型分析…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...