当前位置: 首页 > news >正文

背包问题算法

背包问题算法

  • 0-1背包问题
    • 二维数组
    • 一维数组
  • 完全背包问题
    • 二维数组
    • 一维数组
  • 多重背包问题
    • 一维数组

0-1背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多为1

二维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量
n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [[0] * (c + 1) for _ in range(n + 1)]
for i in range(1, n + 1):for j in range(1, c + 1): # 正向if j >= w[i]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i])else:dp[i][j] = dp[i - 1][j]for rows in dp:print(rows)
print('最大value:', dp[n][c])

一维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量n = len(w)  # 物品数量
w.insert(0, 0)
v.insert(0, 0)
dp = [0] * (c + 1)
for i in range(1, n + 1):for j in range(c, 0, -1): # 逆向if j >= w[i]:dp[j] = max(dp[j], dp[j - w[i]] + v[i])print(dp)
print('最大value:', dp[c])

完全背包问题

问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多不限

二维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量n = len(w)
w.insert(0, 0)
v.insert(0, 0)dp = [[0] * (c + 1) for _ in range(n + 1)]for i in range(1, n + 1):for j in range(1, c + 1): # 正向if j >= w[i]:dp[i][j] = max(dp[i - 1][j], dp[i][j - w[i]] + v[i])else:dp[i][j] = dp[i - 1][j]
for values in dp:print(values)
print('最大value:', dp[n][c])

一维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]  # 价值
c = 9  # 最大容量n = len(w)w.insert(0, 0)
v.insert(0, 0)dp = [0] * (c + 1)for i in range(1, n + 1):for j in range(0, c + 1): # 正向if j >= w[i]:dp[j] = max(dp[j], dp[j - w[i]] + v[i])print(dp)
print('最大value:', dp[c])

多重背包问题

问题:背包的容量为10,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少,每种物品的数量最多分别为[2, 1, 2, 1]

一维数组

w = [2, 4, 6, 9]  # 重量
v = [3, 4, 5, 6]
counts = [2, 1, 2, 1]  # 数量
c = 10  # 最大容量
n = len(w)w.insert(0, 0)
v.insert(0, 0)
counts.insert(0, 0)dp = [0] * (c + 1)for i in range(1, n + 1):for j in range(c, 0, -1): # 逆向for k in range(1, counts[i] + 1):if j >= k * w[i]:dp[j] = max(dp[j], dp[j - k * w[i]] + v[i])print(dp)
print('最大value:', dp[c])

相关文章:

背包问题算法

背包问题算法 0-1背包问题二维数组一维数组 完全背包问题二维数组一维数组 多重背包问题一维数组 0-1背包问题 问题:背包的容量为9,有重量分别为[2, 4, 6, 9]的四个物品,价值分别为[3, 4, 5, 6],求背包能装的物品的最大价值是多少…...

echarts柱状图可鼠标左击出现自定义弹框,右击隐藏弹框并阻止默认右击事件

每项x轴数据对应有两条柱图和一条阴影效果是学习其它博客得到的效果,这个是学习的原文链接:echarts两个合并柱体(普通柱状图象形柱图)共享一个柱体阴影 因为这次情况比较特殊,不仅需要自定义弹框内容,而且…...

存算一体成为突破算力瓶颈的关键技术?

大模型的训练和推理需要高性能的算力支持。以ChatGPT为例,据估算,在训练方面,1746亿参数的GPT-3模型大约需要375-625台8卡DGX A100服务器训练10天左右,对应A100 GPU数量约3000-5000张。 在推理方面,如果以A100 GPU单卡…...

Pytorch_1_基本语法

一、Pytorch的基本元素操作 1.引入torch from __future__ import print_function import torch 2.创建矩阵 x torch.empty(5,3) print(x) 3.输出结果: tensor([[7.9191e34, 1.1259e24, 1.2359e-42], [4.0824e-40, 1.1379e-35, 2.5353e30], [8.…...

2024上海国际玻璃纤维及新材料展览会

2024上海国际玻璃纤维及新材料展览会 时间:2024年12月18~20日 地点:上海新国际博览中心 ◆ 》》》展会概况: 玻璃纤维是一种性能优异的无机非金属材料,比有机纤维耐温高,不燃,抗腐&#xff…...

云计算项目九:K8S安装

K8S安装 Kube-master安装 按照如下配置准备云主机 防火墙相关配置:禁用selinux,禁用swap,且在firewalld-*。上传kubernetes.zip 到跳板机 配置yum仓库(跳板机) 跳板机主机配置k8s软件源服务端 [rootjs ~]# yum -y…...

sign加密方法生成

1. 引入包的问题 2. 原因 .pycrypto、pycrytodome和crypto是一个东西,crypto在python上面的名字是pycrypto,它是一个第三方库,但是已经停止更新 3. 解决方法 --直接安装:pip install pycryptodome 3.但是,在使用的时…...

【Linux】编译器-gcc/g++使用

个人主页 : zxctscl 文章封面来自:艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 初见gcc和g3. 程序的翻译过程3.1 预处理3.1.1 宏替换 去注释 头文件展开3.1.2 条件编译 3.2 编译3.3 汇编3.4 链接 4. 链接4.1 动态链接4.2 静态链接 1. 前言 在之…...

Python 中的 filter() 函数:筛选可迭代对象元素

在 Python 中,filter() 函数是一个非常有用的内置函数,用于根据指定条件过滤可迭代对象中的元素。本文将深入探讨 filter() 函数的用法、工作原理以及常见应用场景,以帮助大家更好地理解和运用这个函数。 什么是 filter() 函数? …...

Java高频面试之并发篇

有需要互关的小伙伴,关注一下,有关必回关,争取今年认证早日拿到博客专家 并行和并发有什么区别? 并行是同时执行多个任务,而并发是多个任务在一段时间内交替执行。并行(Parallel)是指同时执行多个任务或操作,通过同时…...

docker 运行异构镜像

概述 关于docker镜像在不同的cpu架构下运行报错的解决办法,作者踩坑验证,在此分享经验 某次工作遇到需要银行内部部署docker镜像,由于行内已经开始走信创的路线,使用鲲鹏系统,arm架构,记过就遇到了standa…...

练习3-8 查询水果价格

探索--题目集索引 给定四种水果,分别是苹果(apple)、梨(pear)、桔子(orange)、葡萄(grape),单价分别对应为3.00元/公斤、2.50元/公斤、4.10元/公斤、10.20元…...

PTA 对于下列程序,正确的是() 。void f(int *p){ *p = 5;}int main(void){ int a, *p; a = 10;

对于下列程序,正确的是() 。 void f(int *p) {*p 5; } int main(void) {int a, *p;a 10;p &a;f(p);printf(“%d”, (*p));return 0; }A.5 B.6 C.10 D.11 答:A 解析:这里考察当是指针作为函数的参数。这里将 p …...

【银河商学】大蓝短视频学习02——流量突围实战

【银河商学】大蓝短视频学习02——流量突围实战 内容大纲 找对标找准你的"竞争对手" 定形式选定适合你的视频形式 做内容选题决定命运 2s上热门 一、找对标 1. 为什么要找对标 标准答案,少走弯路99%的问题,都有标准答案。 找个懂得人问一问 秒上热门,快速起号预…...

Android 获取Sms

Android 获取Sms 本篇文章记录下android下获取短信列表. 1: 申请权限 <uses-permission android:name"android.permission.READ_SMS" />2: 获取短信内容列表 private void readSms() {String[] projection {"_id", "address", "b…...

【Linux】cpp-httplib库

目录 升级gcc版本 下载cpp-httplib的zip安装包&#xff0c;上传到服务器 ​编辑 简单使用 首先打开gittee,搜索cpp-httplib,选择其中一个即可 也可以点下方链接 cpp-httplib库&#xff1a;cpp-httplib: cpp-httplib (gitee.com) 注意&#xff1a;cpp-httplib在使用的时候需…...

全网最最最详细centos7如何安装docker教程

在CentOS 7上安装Docker主要包括以下步骤&#xff1a; 1. 卸载旧版本的Docker 首先&#xff0c;需要确保系统上没有安装旧版本的Docker。可以通过以下命令来卸载它们&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-late…...

【C++专栏】C++入门 | 函数重载、引用、内联函数

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;C专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ C入门 | 函数重载、引用、内联函数 文章编号&#xff1a;C入门 / 02 文…...

html--彩虹爱心

文章目录 js内容cssreset.min.cssstyle.css html内容 js内容 const colors ["#e03776","#8f3e98","#4687bf","#3bab6f","#f9c25e","#f47274"]; const SVG_NS http://www.w3.org/2000/svg; const SVG_XLINK &q…...

基于Kronig-Penney能带模型的MATLAB求解与仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于Kronig-Penney能带模型的MATLAB求解与仿真.综合利用 MATLAB提供的求解常微分方程、矩阵行列式、代数表达式化简及绘图等函数 ,可使 Kronig-Penney能带模型分析…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...