LVS集群(Linux Virtual server)介绍----及LVS的NAT模式部署(一)
群集的含义
●Cluster,集群、群集
由多台主机构成,但对外只表现为一个整体,只提供访问入口(域名或IP地址),相当于一台大型计算机
问题:
互联网应用中,随着站点对硬件性能、响应速度、服务稳定性、数据可靠性等要求越来越高,单台服务器已经无法满足负载均衡及高可用的要求。
一、 集群和分布式
系统性能扩展方式:
-
Scale UP:垂直扩展,向上扩展,增强,性能更强的计算机运行同样的服务,升级单机的硬件设备
-
Scale Out:水平扩展,向外扩展,增加设备,并行地运行多个服务调度分配问题,Cluster
垂直扩展不再提及:
随着计算机性能的增长,其价格会成倍增长
单台计算机的性能是有上限的,不可能无限制地垂直扩展,多核CPU意味着即使是单台计算机也可以并行的。那么,为什么不一开始就并行化技术?
1.1 集群 Cluster
Cluster:集群,为解决某个特定问题将多台计算机组合起来形成的单个系统,就需要用到反向代理
Cluster分为三种类型:
-
LB: Load Balancing,负载均衡,多个主机组成,每个主机只承担一部分访问请求
-
HA: High Availiablity,高可用(就是有备胎技术),避免 SPOF(single Point Of failure)
-
HPC: High-performance computing,高性能
HA:高可用(就是有备胎技术),避免 SPOF(single Point Of failure),即避免单点故障
MTBF:Mean Time Between Failure 平均无故障时间,正常时间
MTTR:Mean Time To Restoration( repair)平均恢复前时间,故障时间
A = MTBF /(MTBF+MTTR) (0,1):99%,99.5%,99.9%,99.99%,99.999%SLA:服务等级协议(简称:SLA,全称:service level agreement)。是在一定开销下为保障服
务的性能和可用性,服务提供商与用户间定义的一种双方认可的协定。通常这个开销是驱动提供服
务质量的主要因素。在常规的领域中,总是设定所谓的三个9,四个9来进行表示,当没有达到这
种水平的时候,就会有一些列的惩罚措施,而运维,最主要的目标就是达成这种服务水平。1年 = 365天 = 8760小时
90 = (1-90%)*365=36.5天
99 = 8760 * 1% = 87.6小时
99.9 = 8760 * 0.1% = 8760 * 0.001 = 8.76小时
99.99 = 8760 * 0.0001 = 0.876小时 = 0.876 * 60 = 52.6分钟
99.999 = 8760 * 0.00001 = 0.0876小时 = 0.0876 * 60 = 5.26分钟
99.9999= (1-99.9999%)*365*24*60*60=31秒#停机时间又分为两种,一种是计划内停机时间,一种是计划外停机时间,而运维则主要关注计划外停机时间。#轮询(Round Robin):将收到的访问请求按照顺序轮流分配给群集中的各节点,均 等地对待每台服务器,而不管服务器实际的连接数和系统负载。 #加权轮询(Weighted Round Robin):根据调度器设置的权重值来分发请求,权重 值高的节点优先获得任务并且分配的请求越多,这样可以保证性能高的节点承担更 多请求。 #最少连接(Least Connections):根据真实服务器已建立的连接数进行分配,将收 到的访问请求优先分配给连接数最少的节点。如果所有的服务器节点性能相近,采用这种方式可以更好地均衡负载。 #加权最少连接(Weighted Least Connections):在服务器节点的性能差异较大的 情况下,调度器可以根据节点服务器负载自动调整权重,权重较高的节点将承担更 大比例的活动连接负载。 #IP_Hash根据请求来源的IP地址进行Hash计算,得到后端服务器,这样来自同一个IP的请求总是会落到同一台服务器上处理,以致于可以将请求上下文信息存储在这个服务器上,#url_hash 按访问url的hash结果来分配请求,使每个url定向到同一个后端服务器,后端服务器为缓存时比较有效。具体没研究过#fair采用的不是内建负载均衡使用的轮换的均衡算法,而是可以根据页面大小、加载时间长短智能的进行负载均衡。也就是根据后端服务器时间来分配用户请求,响应时间短的优先分配
1.2 分布式系统
分布式存储:Ceph,GlusterFS,FastDFS,MogileFS
分布式计算:hadoop,Spark
分布式常见应用
-
分布式应用-服务按照功能拆分,使用微服务(单一应用程序划分成一组小的服务,服务之间互相协调、互相配合,为用户提供最终价值服务)
-
分布式静态资源--静态资源放在不同的存储集群上
-
分布式数据和存储--使用key-value缓存系统
-
分布式计算--对特殊业务使用分布式计算,比如Hadoop集群
1.3 集群和分布式
集群:同一个业务系统,部署在多台服务器上。集群中,每一台服务器实现的功能没有差别,数据和代码都是一样的。
分布式:一个业务被拆成多个子业务,或者本身就是不同的业务,部署在多台服务器上。分布式中,每一台服务器实现的功能是有差别的,数据和代码也是不一样的,分布式每台服务器功能加起来,才是完整的业务。
分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。对于大型网站,访问用户很多,实现一个群集,在前面部署一个负载均衡服务器,后面几台服务器完成
同一业务。如果有用户进行相应业务访问时,负载均衡器根据后端哪台服务器的负载情况,决定由给哪
一台去完成响应,并且一台服务器垮了,其它的服务器可以顶上来。分布式的每一个节点,都完成不同
的业务,如果一个节点垮了,那这个业务可能就会失败
1.4 集群设计原则
可扩展性—集群的横向扩展能力
可用性—无故障时间 (SLA service level agreement)
性能—访问响应时间
容量—单位时间内的最大并发吞吐量(C10K 并发问题)
1.5 集群设计实现
1.5.1 基础设施层面
-
提升硬件资源性能—从入口防火墙到后端 web server 均使用更高性能的硬件资源
-
多域名—DNS 轮询A记录解析
-
多入口—将A记录解析到多个公网IP入口
-
多机房—同城+异地容灾
-
CDN(Content Delivery Network)—基于GSLB(Global Server Load Balance)实现全局负载均衡,如:DNS
1.5.2 业务层面
-
分层:安全层、负载层、静态层、动态层、(缓存层、存储层)持久化与非持久化
-
分割:基于功能分割大业务为小服务
-
分布式:对于特殊场景的业务,使用分布式计算
1.6 LB Cluster 负载均衡集群
1.6.1 按实现方式划分
硬件 F5 Big-IP(F5服务器负载均衡模块)
软件
lvs:Linux Virtual Server,阿里四层 SLB (Server Load Balance)使用
nginx:支持七层调度,阿里七层SLB使用 Tengine
haproxy:支持七层调度
ats:Apache Traffic Server,yahoo捐助给apache
perlbal:Perl 编写
pound
1.6.2 基于工作的协议层次划分
-
传输层(通用):DNAT 和 DPORT
LVS:linux内核功能
nginx:stream
haproxy:mode tcp
-
应用层(专用):针对特定协议,常称为 proxy server
http:nginx, httpd, haproxy(mode http), ...
fastcgi:nginx, httpd, ...
mysql:mysql-proxy, mycat(读写分离)
SNAT:让 内网用户 可以访问外网
DNAT:把内网的服务 共享到公网上(外网用户可以访问 公司内网的服务)
1.6.3 负载均衡的会话保持
-
session sticky:同一用户调度固定服务器
Source IP:LVS sh算法(对某一特定服务而言)
Cookie
-
session replication:每台服务器拥有全部session(复制)
session multicast cluster
-
session server:专门的session服务器(server)
Memcached,Redis
1.7 HA 高可用集群实现
keepalived:vrrp协议
Ais:应用接口规范
heartbeat
cman+rgmanager(RHCS)
coresync_pacemaker
二、 Linux Virtual Server简介
2.1 LVS介绍
LVS:Linux Virtual Server,负载调度器,内核集成,章文嵩(花名正明), 阿里的四层SLB(Server Load Balance)是基于LVS+keepalived实现
LVS 官网:http://www.linuxvirtualserver.org/
阿里SLB和LVS:
https://yq.aliyun.com/articles/1803
https://github.com/alibaba/LVS
2.2 LVS工作原理
VS根据请求报文的目标IP和目标协议及端口将其调度转发至某RS(真实服务器),根据调度算法来挑选RS。LVS是内核级功能,工作在INPUT链的位置,将发往INPUT的流量进行“处理”
LVS:linux内核级功能
[root@zzzcentos1 ~]#grep -i -C 10 ipvs /boot/config-3.10.0-693.el7.x86_64
2.3LVS集群类型中的术语
-
VS(代理服务器):Virtual Server,Director Server(DS), Dispatcher(调度器),Load Balancer(lvs服务器)
-
RS:Real Server(lvs), upstream server(nginx), backend server(haproxy)(真实服务器)
-
CIP:Client IP(客户机IP)
-
VIP:Virtual serve IP VS外网的IP
-
DIP:Director IP VS内网的IP
-
RIP:Real server IP (真实IP)
-
VS:代理服务器
RS:真实服务器
VIP:代理服务器的外网ip
DIP:代理服务器的内网ip
RIP:真实服务器的ip地址
访问流程:CIP <--> VIP == DIP <--> RIP
三、 LVS工作模式和相关命令
3.1 LVS集群的工作模式
-
lvs-nat:修改请求报文的目标IP,多目标IP的DNAT
-
lvs-dr:操纵封装新的MAC地址(直接路由)
-
lvs-tun:隧道模式
lvs-dr 是 LVS集群的默认工作模式
3.1.1 LVS的NAT模式
报文过程:
帮助理解报文过程
lvs-nat:本质是多目标IP的DNAT,通过将请求报文中的目标地址和目标端口修改为某处的RS的RIP和PORT实现转发
(1)RIP和DIP应在同一个IP网络,且应使用私网地址;RS的网关要指向DIP
(2)请求报文和响应报文都必须经由lvs服务器转发,lvs服务器易于成为系统瓶颈
(3)支持端口映射,可修改请求报文的目标PORT
(4)VS(代理服务器)必须是Linux系统,RS(真实服务器)可以是任意OS系统
3.1.2 IP隧道
-
RIP和DIP可以不处于同一物理网络中,RS的网关一般不能指向DIP,且RIP可以和公网通信。也就是说集群节点可以跨互联网实现。DIP, VIP, RIP可以是公网地址。
-
RealServer的通道接口上需要配置VIP地址,以便接收DIP转发过来的数据包,以及作为响应的报文源IP。
-
DIP转发给RealServer时需要借助隧道,隧道外层的IP头部的源IP是DIP,目标IP是RIP,而
RealServer响应给客户端的IP头部是根据隧道内层的IP头分析得到的,源IP是VIP,目标IP是CIP
-
请求报文要经由Director,但响应不经由Director,响应由RealServer自己完成
-
不支持端口映射
-
RS的OS须支持隧道功能
一般来说,隧道模式常会用来负载调度缓存服务器组,这些缓存服务器一般放置在不同的网络环境,可以就近折返给客户端。在请求对象不在Cache服务器本地命中的情况下,Cache服务器要向源服务器发送请求,将结果取回,最后将结果返回给用户。
3.1.3直接路由 DR模式
直接路由(Direct Routing):简称 DR 模式,采用半开放式的网络结构,与 TUN模式的结构类似,但各节点并不是分散在各地,而是与调度器位于同一个物理网络。
负载调度器与各节点服务器通过本地网络连接,不需要建立专用的 IP 隧道
直接路由,LVS默认模式,应用最广泛,通过请求报文重新封装一个MAC首部进行转发,源MAC是DIP所在的接口的MAC,目标MAC是某挑选出的RS的RIP所在接口的MAC地址;源IP/PORT,以及目标IP/PORT均保持不变。
DR两种解决方法:
绑定ARP绑定Ivs 代理服务器(碰不到客户端)
关闭ARP 广播 真实服务器(一般采用它)
DR模式的特点:
-
Director(调度器)和各RS(真实服务器)都配置有VIP(虚拟ip)
-
确保前端路由器将目标IP为VIP的请求报文发往Director
-
在前端网关做静态绑定VIP和Director的MAC地址
-
在RS上使用arptables工具
arptables -A IN -d $VIP -j DROP arptables -A OUT -s $VIP -j mangle --mangle-ip-s $RIP
在RS上修改内核参数以限制arp通告及应答级别
/proc/sys/net/ipv4/conf/all/arp_ignore 忽略arp广播 /proc/sys/net/ipv4/conf/all/arp_announce 关闭无敌arp
RS的RIP可以使用私网地址,也可以是公网地址;RIP与DIP在同一IP网络;RIP的网关不能指向DIP,以确保响应报文不会经由Director
-
RS和Director要在同一个物理网络
-
请求报文要经由Director,但响应报文不经由Director,而由RS直接发往Client
-
不支持端口映射(端口不能修改)
-
无需开启 ip_forward路由转发
-
RS可使用大多数OS系统
3.1.5 LVS工作模式总结和比较
3.2 LVS 调试算法
[root@zzzcentos1 ~]#grep -i -C 10 ipvs /boot/config-3.10.0-693.el7.x86_64
ipvs scheduler:根据其调度时是否考虑各RS当前的负载状态,分为两种:静态方法和动态方法
静态方法: 不管后端真实服务器的状态,根据自身算法进行调度
动态方法: 会根据后端服务器的状态来进行调度
静态方法:
1、RR:roundrobin,轮询,较常用
2、WRR:Weighted RR,加权轮询,较常用 先算总权重 再用自己的 权重去除以 总权重
3、SH:Source Hashing,实现session sticky,源IP地址hash;将来自于同一个IP地址的请求始终发往第一次挑中的RS,从而实现会话绑定
4、DH:Destination Hashing;目标地址哈希,第一次轮询调度至RS,后续将发往同一个目标地址的请求始终转发至第一次挑中的RS,典型使用场景是正向代理缓存场景中的负载均衡,如: Web缓存
动态方法:
动态:一个参考值,来确定服务器是否忙 这个值越小 代表服务器 闲
就会优先调度给闲的服务器
主要根据每RS当前的负载状态及调度算法进行调度Overhead=value 较小的RS将被调度
1、LC:least connections 适用于长连接应用
Overhead=activeconns*256+inactiveconns
2、WLC:Weighted LC,默认调度方法,较常用
Overhead=(activeconns*256+inactiveconns)/weight
3、SED:Shortest Expection Delay,初始连接高权重优先,只检查活动连接,而不考虑非活动连接
Overhead=(activeconns+1)*256/weight
activeconns 活跃
inactiveconns 不活跃
4、NQ:Never Queue,第一轮均匀分配,后续SED
5、LBLC:Locality-Based LC,动态的DH算法,使用场景:根据负载状态实现正向代理,实现Web Cache等 检查后端服务器忙不忙
6、LBLCR:LBLC with Replication,带复制功能的LBLC,解决LBLC负载不均衡问题,从负载重的复制到负载轻的RS,,实现Web Cache等
缺点:
LC最小连接数 不考虑权重
WLC默认调度加权最小连接数,第一轮不合理 都是 一样的 优先级
SED 权重小的空闲
为什么没有url hash?
LVS(Linux Virtual Server)的调度算法通常不包括URL哈希。
这是因为LVS主要是一个四层(Layer 4)负载均衡解决方案,它基于传输层信息(如IP地址和端口号)来进行负载均衡,而不涉及应用层(Layer 7)的内容,比如URL。因此,LVS的调度算法通常侧重于传输层的信息,而不是应用层的具体内容。
四、 ipvsadm 工具
ipvsadm 工具选项说明
-A: 添加虚拟服务器
-D: 删除整个虚拟服务器
-s: 指定负载调度算法(轮询: rr、加权轮询: wrr、最少连接: lc、加权最少连接: wlc)
-a: 添加真实服务器(节点服务器)
-d: 删除某一个节点
-t: 指定VIP地址及TCP端口
-r: 指定RIP地址及TCP端口
-m: 表示使用NAT群集模式
-g: 表示使用DR模式
-i: 表示使用TUN模式
一w: 设置权重(权重为0时表示暂停节点)
-p 60: 表示保持长连接60秒
-l: 列表查看 LVS虚拟服务器(默认为查看所有)
-n: 以数字形式显示地址、端口等信息,常与"-l“选项组合使用。ipvsadm -ln#管理集群服务
ipvsadm -A|E -t|u|f service-address [-s scheduler] [-p [timeout]] [-M netmask] [--pe persistence_engine] [-b sched-flags]
ipvsadm -D -t|u|f service-address #删除
ipvsadm –C #清空
ipvsadm –R #重载,相当于ipvsadm-restore
ipvsadm -S [-n] #保存,相当于ipvsadm-save
#管理集群中的RS
ipvsadm -a|e -t|u|f service-address -r server-address [-g|i|m] [-w weight]
ipvsadm -d -t|u|f service-address -r server-address
ipvsadm -L|l [options]
ipvsadm -Z [-t|u|f service-address]选项:
lvs类型:-g: gateway, dr类型,默认-i: ipip, tun类型-m: masquerade, nat类型
-w weight:权重例子:
ipvsadm -A -t 12.0.0.1:80 -s rr
ipvsadm -a -t 12.0.0.1:80 -r 192.168.80.11:80 -myum install ipvsadmUnit File: ipvsadm.service
主程序:/usr/sbin/ipvsadm
规则保存工具:/usr/sbin/ipvsadm-save
规则重载工具:/usr/sbin/ipvsadm-restore
配置文件:/etc/sysconfig/ipvsadm-config
ipvs调度规则文件:/etc/sysconfig/ipvsadm
ipvsadm 是lvs内核使用工具
keepalive协助ipvsadm工具生成高可用
五、NAT模式 LVS负载均衡部署
NFS 是一种基于 TCP/IP 传输的网络文件系统协议,最初由 Sun 公司开发。通过使用 NFS
协议,客户机可以像访问本地目录一样访问远程服务器中的共享资源。对于大多数负载均衡
群集来说,使用 NFS 协议来共享数据存储是比较常见的做法,NFS 也是 NAS 存储设备必然支
持的一种协议。
NFS 服务的实现依赖于 RPC(Remote Process Call,远端过程调用)机制,以完成远程
到本地的映射过程。在 CentOS 7 系统中,需要安装 nfs-utils、rpcbind 软件包来提供 NFS
共享服务,前者用于 NFS 共享发布和访问,后者用于 RPC 支持
实验拓朴图:
lvs负载调度器:配置双网卡 内网:192.168.246.7 (ens33) 外网卡:12.0.0.1 (ens36)
二台WEB服务器集群池:192.168.246.8、192.168.246.9
一台NFS共享服务器:192.168.246.10
客户端:访问curl 12.0.0.1
①四台服务器都关闭防火墙、防护
②7-4共享服务器NFS配置
[root@localhost ~]# yum install nfs-utils.x86_64 rpcbind -y
#安装nfs服务[root@localhost ~]# systemctl start rpcbind
[root@localhost ~]# systemctl start nfs
#开启服务
③7-2web服务器配置
④7-3web服务器配置
先检测下:
⑤7-1 调度服务器 配置
我们使用本地yum源安装软件ipvsadm
网关地址别忘记啊 修改7-2、7-3真实服务器网关地址
RIP和DIP应在同一个IP网络,且应使用私网地址;RS的网关要指向DIP
去检测:
lvs 的nat模式 是通过修改源ip和目的ip来实现负载均衡
六、安装软件ipvsadm的两种方法
方法一:使用yum安装
[root@zzzcentos1 ~]#yum install ipvsadm.x86_64 -y
ipvsadm相关配置文件:
主程序:/usr/sbin/ipvsadm
规则保存工具:/usr/sbin/ipvsadm-save
规则重载工具:/usr/sbin/ipvsadm-restore
配置文件:/etc/sysconfig/ipvsadm-config
ipvs调度规则文件:/etc/sysconfig/ipvsadm
方法二:可以使用本地yum源安装软件ipvsadm
相关文章:

LVS集群(Linux Virtual server)介绍----及LVS的NAT模式部署(一)
群集的含义 ●Cluster,集群、群集由多台主机构成,但对外只表现为一个整体,只提供访问入口(域名或IP地址),相当于一台大型计算机 问题: 互联网应用中,随着站点对硬件性能、响应速度、服务稳定性、数据可靠…...

海外媒体宣发套餐如何利用3种方式洞察市场-华媒舍
在当今数字化时代,媒体宣发成为了企业推广产品和品牌的重要手段之一。其中,7FT媒体宣发套餐是一种常用而有效的宣传方式。本文将介绍这种媒体宣发套餐,以及如何利用它来洞察市场。 一、关键概念 在深入讨论7FT媒体宣发套餐之前,让…...

开发知识点-Apache Struts2框架
Apache Struts2 介绍S2-001S2CVE-2023-22530 介绍 Apache Struts2是一个基于MVC(模型-视图-控制器)设计模式的Web应用程序框架,它是Apache旗下的一个开源项目,并且是Struts1的下一代产品。Struts2是在Struts1和WebWork的技术基础…...
【Spring高级】第3讲 Bean的生命周期
目录 基本的生命周期后处理器总结 基本的生命周期 为了演示生命周期的过程,我们直接使用 SpringApplication.run()方法,他会直接诶返回一个容器对象。 import org.springframework.boot.SpringApplication; import org.springframework.context.Config…...

【C语言】linux内核tcp_write_xmit和tcp_write_queue_purge
tcp_write_xmit 一、讲解 这个函数 tcp_write_xmit 是Linux内核TCP协议栈中的一部分,其基本作用是发送数据包到网络。这个函数会根据不同情况推进发送队列的头部,确保只要远程窗口有空间,就可以发送数据。 下面是对该函数的一些主要逻辑的中…...
opencv实现视频人脸识别
一. 实现指定图像的人脸识别 注意: 以下实例参考《OpenCV轻松入门面向Python》李立宗著,使用python语言,编辑器为PyCharm,且都运行成功。 1.dface3.jpg图片文件和当前代码放在同一级目录下。 2.级联分类器文件和当前代码文件放在…...
【今日面经】24/3/9 广州Java某小厂电话面经
面经来源:https://www.nowcoder.com/?type818_1 目录 1、 和equals()有什么区别?2、String变量直接赋值和构造函数赋值比较相等吗?3、String一些方法?4、抽象类和接口有什么区别?5、Java容器有哪些?6、Lis…...

日期问题---算法精讲
前言 今天讲讲日期问题,所谓日期问题,在蓝桥杯中出现众多,但是解法比较固定。 一般有判断日期合法性,判断是否闰年,判断日期的特殊形式(回文或abababab型等) 目录 例题 题2 题三 总结 …...

倒计时35天
dp预备(来源:b站acm刘春英老师) 1. 2. 3. 4. 5. 6. 7....
JAVA后端开发面试基础知识(七)——多线程
1. 线程池原理 优点 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线…...
Apache的安装与目录结构详细解说
1. Apache安装步骤 Apache是一款开源的Web服务器软件,常用于搭建网站和服务。以下是Apache的安装步骤: 在官方网站(https://httpd.apache.org/)下载最新版本的Apache软件包。解压下载的软件包到指定目录。运行安装程序ÿ…...

axios的详细使用
目录 axios:现代前端开发的HTTP客户端王者 一、axios简介 二、axios的基本用法 1. 安装axios 2. 发起GET请求 3. 发起POST请求 三、axios的高级特性 1. 拦截器 2. 取消请求 3. 自动转换JSON数据 四、axios在前端开发中的应用 五、总结 axios:…...

空间复杂度的OJ练习——轮转数组
旋转数组OJ链接:https://leetcode-cn.com/problems/rotate-array/ 题目: 思路: 通过题目我们可以知道这是一个无序数组,只需要将数组中的数按给定条件重新排列,因此我们可以想到以下几种方法: 1.暴力求解法…...

学习与学习理论 - 2024教招 - test
一 方向 所有学习理论大的观点,到某个人物个人的观点。抖音:按照粉丝数量、收藏数量、点赞数量排名从编程(思想)、java、自己所拥有的特点看学习方法顺序:java、自身、教学理论的总观点、教学理论代表人物的观点、散兵…...

Spring web开发(入门)
1、我们在执行程序时,运行的需要是这个界面 2、简单的web接口(127.0.0.1表示本机IP) package com.example.demo;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestCont…...

这是谁的女儿?其母亲早已红过头了,现在小小年纪的她也爆红网络,没想到吧?
这是谁的女儿?其母亲早已红过头了,现在小小年纪的她也爆红网络,没想到吧? 原来,作母亲的她在红极一时后似乎沉寂了下来,没想到她11岁的女儿近年来也在社交媒体上走红,她为何也成了小网红呢&…...
鸿蒙开发之gson解析
作为老牌的Java程序员,几乎每个项目都逃不掉fastjson/gson等三方库。那么在OpenHarmony/HarmonyOS应用开发中,做数据解析时能不能使用fastjson/gson三方库呢?于是我搜索了一下,其实在arkts开发过程中也是可以使用JS里自带的JSONparse和JSONstringify方法来实现JSON和对象转…...

图形库实战丨C语言扫雷小游戏(超2w字,附图片素材)
目录 效果展示 游玩链接(无需安装图形库及VS) 开发环境及准备 1.VS2022版本 2.图形库 游戏初始化 1.头文件 2.创建窗口 3.主函数框架 开始界面函数 1.初始化 1-1.设置背景颜色及字体 1-2.处理背景音乐及图片素材 1-3.处理背景图位置 2.选…...
c++: string中 find, rfind, find_frist_of, find_laste_of 与 substr之间的操作
在 C 的 std::string 类中,有几个成员函数可以用于在字符串中执行搜索和子字符串提取操作。以下是这些函数的简要说明: find(): 查找子字符串的第一个出现位置。 size_t find(const string& str, size_t pos 0) const; size_t find(const char* s, …...
[python3] dataclass的对象排序
在使用 dataclass(orderTrue) 中,会比较数据类中定义的所有属性。具体来说,生成的比较运算符方法会按照数据类中定义属性的顺序逐个比较属性的取值。 下面是一个示例代码,演示了 orderTrue 比较数据类中所有属性的情况: from da…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...