当前位置: 首页 > news >正文

基于决策树实现葡萄酒分类

基于决策树实现葡萄酒分类

将葡萄酒数据集拆分成训练集和测试集,搭建tree_1和tree_2两个决策树模型,tree_1使用信息增益作为特征选择指标,B树使用基尼指数作为特征选择指标,各自对训练集进行训练,然后分别对训练集和测试集进行预测。输出以下结果:

(1)tree_1(信息增益)在训练集上的准确率,在测试集上的准确率。

(2)tree_2(基尼指数)在训练集上的准确率,在测试集上的准确率。

源码

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifierif __name__ == "__main__":print("2 基于决策树实现葡萄酒分类")print("李思强 20201107148")wine = load_wine()x_train,x_test,y_train,y_test = train_test_split(wine.data,wine.target)print("tree_1(信息增益)")tree_1 = DecisionTreeClassifier(criterion="entropy")tree_1.fit(x_train,y_train)train_score = tree_1.score(x_train,y_train)test_score = tree_1.score(x_test,y_test)print("训练集")print("准确率:", train_score)print("测试集")print("准确率:", test_score)print("tree_2(基尼指数)")tree_2 = DecisionTreeClassifier(criterion="gini")tree_2.fit(x_train,y_train)train_score = tree_2.score(x_train,y_train)test_score = tree_2.score(x_test,y_test)print("训练集:")print("准确率:", train_score)print("测试集")print("准确率:", test_score)

运行结果

在这里插入图片描述

相关文章:

基于决策树实现葡萄酒分类

基于决策树实现葡萄酒分类 将葡萄酒数据集拆分成训练集和测试集,搭建tree_1和tree_2两个决策树模型,tree_1使用信息增益作为特征选择指标,B树使用基尼指数作为特征选择指标,各自对训练集进行训练,然后分别对训练集和测…...

上位机图像处理和嵌入式模块部署(qmacvisual三个特色)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 了解了qmacvisual的配置之后,正常来说,我们需要了解下不同插件的功能是什么。不过我们不用着急,可以继续学习下…...

电脑解锁后黑屏有鼠标--亲测!!不需要重装系统!!

问题:上周电脑黑屏,只有鼠标,鼠标还不能右键!! 中招:win10系统最新版火绒安全 ,那你有概率获得开机黑屏套餐一份。 原因是:火绒把我们的explorer删除了导致黑屏,这个文…...

Spring 事务的种类 ? 传播机制 ?

在Spring框架中,事务管理可以分为编程式事务和声明式事务两种主要形式。每种形式都有其特点和使用场景。以下是这两种形式的具体介绍: 编程式事务 编程式事务是通过编写代码来实现事务管理的。在Spring中,编程式事务管理通常通过Transactio…...

深入了解 Java 方法和参数的使用方法

Java 方法 简介 方法是一块仅在调用时运行的代码。您可以将数据(称为参数)传递到方法中。方法用于执行特定的操作,它们也被称为函数。 使用方法的原因 重用代码:定义一次代码,多次使用。提高代码的结构化和可读性。…...

自动驾驶技术解析与关键步骤

目录 前言1 自动驾驶主要技术流程1.1 车辆周围环境感知1.2 车辆和行人检测分析1.3 运动轨迹规划 2 关键技术概述2.1 车辆探测与图片输入2.2 行人检测2.3 运动规划2.4 电子地图2.5 轨迹预测2.6 交通灯分析2.7 故障检测 结语 前言 自动驾驶汽车作为未来交通领域的重要发展方向&a…...

[Electron]中IPC进程间通信

Electron中IPC 进程间通信 (IPC) 是在 Electron 中构建功能丰富的桌面应用程序的关键部分之一。在 Electron 中,进程使用 ipcMain 和 ipcRenderer 模块,通过开发人员定义的“通道”传递消息来进行通信。 本文介绍以下几个方面: 1-渲染进程到…...

数学建模-动态规划(美赛运用)

动态规划模型的要素是对问题解决的抽象,其可分为: 阶段。指对问题进行解决的自然划分。例如:在最短线路问题中,每进行走一步的决策就是一个阶段。 状态。指一个阶段开始时的自然状况。例如:在最短线路问题中&#xff…...

bat文件给多个Android设备安装apk

本文是安装一个apk 1、确保以下3个文件在同一个目录下 1>要安装的apk,这里是mmb.apk 2>设备名单,保存在.txt文件中,一行一个设备名,设备名通过adb devices获取,截图中是两个设备 txt文件中的样式 3>要运行…...

[数据集][目标检测]光伏板太阳能板缺陷检测数据集VOC+YOLO格式2400张3类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2400 标注数量(xml文件个数):2400 标注数量(txt文件个数):2400 标注…...

深入浅出计算机网络 day.1 概论④ 计算机网络的定义和分类

不要退却,要绽放魅力 我的心会共鸣 和你 —— 24.3.9 一、计算机网络的定义 计算机网络早期的一个最简单定义 现阶段计算机网络的一个较好的定义 二、计算机网络的分类 按交换方式分类 按使用者分类 按传输介质分类 按覆盖范围分类 按拓扑结构分类,可…...

rust引用-借用机制扩展

rust引用-借用机制还是有限制的,比如我们要在多次函数调用中修改参数、跨线程传递参数并发修改的场景,单纯使用引用-借用机制就不灵了(这种场景和引用-借用设计思想是冲突的)。这时需要借助rust提供的Rc、Arc、Cell、RefCell对机制…...

JVM的工作流程

目录 1.JVM 简介 2.JVM 执行流程 3. JVM 运行时数据区 3.1 堆(线程共享) 3.3 本地方法栈(线程私有) 3.4 程序计数器(线程私有) 3.5 方法区(线程共享) 4.JVM 类加载 ① 类…...

kibana配置 dashbord,做可视化展示

一、环境介绍 这里我使用的kibana版本为7.17版本。 语言选择为中文。 需要已经有es,已经有kibana,并且都能正常访问。 二、背景介绍 kibana的可视化界面,可以配置很多监控统计界面。非常方便,做数据的可视化展示。 这篇文章&…...

前后端分离项目Docker部署指南(下)

目录 前言: 一.安装nginx 创建目录 上传nginx.conf至/data/nginx/conf文件夹中 运行启动容器 上传静态资源文件 ​编辑 访问结果 前言: 在上一篇博客中,我们深入探讨了如何使用Docker部署一个前后端分离的项目中的后端部分。我们构建…...

算法->位运算

有关位运算的操作符 >> <<&|^~ 常见位运算操作 给定一个数&#xff0c;确定它的二进制中第x位是0还是1 (n >> x) & 1; 将一个数n的二进制中第x位修改为1 n | (1 << x) 将一个数n的二进制中第x位修改为0 n & (~(1 << x)) 提…...

【Python】成功解决ModuleNotFoundError: No module named ‘matplotlib‘

【Python】成功解决ModuleNotFoundError: No module named ‘matplotlib’ &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448…...

centos7中python3.10找不到openssl解决方案

如果有用其他方法安装了其他版本openssl&#xff0c;记得卸载其他的openssl&#xff0c;删除其他的openssl相关文件。 yum remove openssl* rm -rf ***下载最新版的openssl文件 按照官网安装方法安装openssl 官方安装地址https://docs.python.org/3/using/unix.html#on-linu…...

【Spring Boot `@Autowired` Annotation】

文章目录 1. 使用Qualifier注解2. 使用Primary注解3. 手动注入&#xff08;较少推荐&#xff09; 在Spring Boot中&#xff0c;Autowired注解用于自动装配bean。默认情况下&#xff0c;它按照类型进行装配。当存在多个相同类型的bean时&#xff0c;就会出现以下错误&#xff1a…...

03.axios数据提交和错误处理

一.axios常用请求方法和数据提交 1. 想要提交数据&#xff0c;先来了解什么是请求方法 请求方法是一些固定单词的英文&#xff0c;例如&#xff1a;GET&#xff0c;POST&#xff0c;PUT&#xff0c;DELETE&#xff0c;PATCH&#xff08;这些都是http协议规定的&#xff09;&am…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...