当前位置: 首页 > news >正文

回归预测 | Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

回归预测 | Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • 回归预测 | Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据);
2.输入多个特征,输出单个变量,回归预测,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:大学生课程设计、期末大作业和毕业设计。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
% 创建输入层
layer = sequenceInputLayer(f_, Normalization = "rescale-symmetric", Name = "input");% 创建网络图
lgraph = layerGraph(layer);
outputName = layer.Name;% 建立网络结构 -- 残差块
for i = 1 : numBlocks% 膨胀因子dilationFactor = 2^(i-1);% 创建TCN正向支路layers = [convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv1_" + i)  % 一维卷积层 layerNormalizationLayer                                                                                             % 层归一化spatialDropoutLayer(dropoutFactor)                                                                                  % 空间丢弃层convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal")                     % 一维卷积层  layerNormalizationLayer                                                                                             % 层归一化reluLayer                                                                                                           % 激活层spatialDropoutLayer(dropoutFactor)                                                                                  % 空间丢弃层additionLayer(4, Name = "add_" + i)];% 添加残差块到网络lgraph = addLayers(lgraph, layers);% 连接卷积层到残差块lgraph = connectLayers(lgraph, outputName, "conv1_" + i);% 创建 TCN反向支路flip网络结构
%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% RMSE
RMSE1 = sqrt(sum((T_sim1' - T_train).^2)./M);
RMSE2 = sqrt(sum((T_test' - T_sim2).^2)./N);disp(['训练集数据的RMSE为:', num2str(RMSE1)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])%MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])    

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

回归预测 | Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测 目录 回归预测 | Matlab实现BiTCN-BiGRU-Attention双向时间卷积双向门控循环单元融合注意力机制多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.M…...

SpringCloud微服务-RabbitMQ快速入门

文章目录 RabbitMQ快速入门1、什么是MQ?2、RabbitMQ概述3、RabbitMQ的结构和概念4、常见消息模型5、HelloWorld RabbitMQ快速入门 1、什么是MQ? MQ (MessageQueue),中文是消息队列,字面来看就是存放消息的…...

OpenCV学习笔记(五)——图片的缩放、旋转、平移、裁剪以及翻转操作

目录 图像的缩放 图像的平移 图像的旋转 图像的裁剪 图像的翻转 图像的缩放 OpenCV中使用cv2.resize()函数进行缩放,格式为: resize_imagecv2.resize(image,(new_w,new_h),插值选项) 其中image代表的是需要缩放的对象,(new_w,new_h)表…...

c++ 串口通信库

根据资料整理的串口通信库,封装成为了动态库,使用者只需要调用接口即可 使用实例如下: //接受数据 void CSerialPortCommonLibDemoDlg::OnReceive() { char * str NULL; str new char[256]; _port.readAllData(str); CString s…...

数据结构之单链表及其实现!

目录 ​编辑 1. 顺序表的问题及思考 2.链表的概念结构和分类 2.1 概念及结构 2.2 分类 3. 单链表的实现 3.1 新节点的创建 3.2 打印单链表 3.3 头插 3.4 头删 3.5 尾插 3.6 尾删 3.7 查找元素X 3.8 在pos位置修改 3.9 在任意位置之前插入 3.10 在任意位置删除…...

Ubuntu 22.04修改静态ip

1. 备份原网络配置文件 # 配置文件名称因机器设置有异 cd /etc/netplan cp 01-network-config.yaml 01-network-config.yaml.bak# 文件内容如下 network:version: 2renderer: NetworkManager2. 修改配置文件 使用 ipconfig 命令查看网络信息,ip addr 命令也可 我这…...

kali当中不同的python版本切换(超简单)

kali当中本身就是自带两个python版本的 配置 update-alternatives --install /usr/bin/python python /usr/bin/python2 100 update-alternatives --install /usr/bin/python python /usr/bin/python3 150 切换版本 update-alternatives --config python 0 1 2编号选择一个即可…...

MongoDB聚合运算符;$dateToString

$dateToString聚合运算符按用户指定的格式将日期对象转为字符串。 语法 { $dateToString: {date: <dateExpression>,format: <formatString>,timezone: <tzExpression>,onNull: <expression> } }字段说明&#xff1a; 字段是否必须描述date是<da…...

【开源】SpringBoot框架开发教学资源共享平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 课程档案模块2.3 课程资源模块2.4 课程作业模块2.5 课程评价模块 三、系统设计3.1 用例设计3.2 类图设计3.3 数据库设计3.3.1 课程档案表3.3.2 课程资源表3.3.3 课程作业表3.3.4 课程评价表 四、系统展…...

python基础——条件判断和循环【if,while,for,range】

&#x1f4dd;前言&#xff1a; 这篇文章主要讲解一下条件判断语句if和循环语句while&#xff0c;for在python中需要注意的地方。 建议已有一定了解&#xff08;对语句的执行逻辑清楚&#xff09;的读者观看&#xff0c;如果对条件判断和循环的执行逻辑不太清楚&#xff0c;也可…...

Pytorch 复习总结 6

Pytorch 复习总结&#xff0c;仅供笔者使用&#xff0c;参考教材&#xff1a; 《动手学深度学习》Stanford University: Practical Machine Learning 本文主要内容为&#xff1a;Pytorch 计算机视觉。 本文先介绍了计算机视觉中两种常见的改进模型泛化性能的方法&#xff1a…...

借助 Terraform 功能协调部署 CI/CD 流水线-Part 1

在当今快节奏的开发环境中&#xff0c;实现无缝、稳健的 CI/CD 流水线对于交付高质量软件至关重要。在本文中&#xff0c;我们将向您介绍使用 Bitbucket Pipeline、ArgoCD GitOps 和 AWS EKS 设置部署的步骤&#xff0c;所有步骤都将利用 Terraform 的强大功能进行编排。在Part…...

云原生基础知识:容器技术的历史

容器化的定义&#xff1a; 容器化是一种轻量级的虚拟化技术&#xff0c;将应用程序及其所有依赖项&#xff08;包括运行时、系统工具、系统库等&#xff09;打包到一个称为容器的单独单元中。容器提供了一种隔离的执行环境&#xff0c;使得应用程序可以在不同的环境中运行&…...

golang实现正向代理和反向代理

文章目录 正向代理反向代理区别与联系:总结代理服务器实现正向代理反向代理正向代理 正向代理是客户端代理,它位于客户端和目标服务器之间。它的作用是保护客户端的隐私和安全。 如我们现在想要访问谷歌,但是由于某些原因,无法直接访问到谷歌,我们可以通过连接一台代理服务…...

grpc四种数据流

grpc四种数据流 简介 1.简单模式 这种模式最为传统,即客户端发起一次请求,服务端响应一个数据,这和大家平时熟悉的rpc没什么区别,所以不在详细介绍 2.服务端数据流模式 这种模式是客户端发起一次请求&#xff0c;服务端返回一段连续的数据流。典型的例子是客户端向服务端发…...

SpringCloud-Alibaba-Nacos教程

SpringCloud-Alibaba-Nacos教程 下载地址 https://github.com/alibaba/nacos/releases/tag/2.2.3 直接进入bin包 运行cmd命令 startup.cmd -m standalone 运行成功后 进入nacos可视化页面 账号密码默认都是nacos http://localhost:8848/nacos 微服务入驻Nacos服务注册…...

bug_java

文章目录 1.创建Maven时&#xff1a; idea报错为&#xff1a;java&#xff1a;错误&#xff1a;不支持发行版本52. Springbot启动报错-类文件具有错误的版本 61.0, 应为 52.0 1.创建Maven时&#xff1a; idea报错为&#xff1a;java&#xff1a;错误&#xff1a;不支持发行版本…...

【目标检测】旋转目标检测DOTA格式转YOLO格式标注

准备DOTA格式数据集&#xff1a; dota_dataset -- images |----- train |----- val -- labels |----- train |----- train_original |----- val |----- val_original 修改class_mapping和图片格式&#xff1a; ultralytics/data/converter.py convert_dota_to_yolo_obb() 转换标…...

运动想象 (MI) 迁移学习系列 (3) : MSFT

运动想象迁移学习系列:MSFT 0. 引言1. 主要贡献2. 数据增强方法3. 基于度量的空间滤波转换器3.1 空间过滤3.2 脑电图ViT3.2.1 变压器编码器层3.2.2 基于度量的损失函数 4. 实验结果4.1 消融实验4.2 基线任务对比4.3 跨主体 5. 总结欢迎来稿 论文地址&#xff1a;https://www.s…...

NeRF模型NeRF模型

参考视频&#xff1a;https://www.youtube.com/watch?vHfJpQCBTqZs&ab_channelVision%26GraphicsSeminaratMIT NeRF模型的输入输出: 输入: (x, y, z): 一个三维空间坐标,代表场景中的一个位置点(θ, φ): 视线方向,θ表示与y轴的夹角,φ表示与x轴的夹角,用两个角度可以…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...