当前位置: 首页 > news >正文

NeRF模型NeRF模型

参考视频:https://www.youtube.com/watch?v=HfJpQCBTqZs&ab_channel=Vision%26GraphicsSeminaratMIT

NeRF模型的输入输出:

输入:

  • (x, y, z): 一个三维空间坐标,代表场景中的一个位置点
  • (θ, φ): 视线方向,θ表示与y轴的夹角,φ表示与x轴的夹角,用两个角度可以唯一确定一条射线的方向

输出: NeRF模型的输出是一个由4个量组成的向量(r, g, b, σ):

  • (r, g, b): RGB三个通道的颜色值,范围在[0, 1]
  • σ: 密度值(density),范围在[0, +∞)

具体来说:

  1. (r, g, b)表示在输入的(x, y, z)位置处,沿(θ, φ)方向看去,这个位置出射的RGB颜色值
  2. σ表示在输入位置(x, y, z)处的体渲染密度(volumetric density)。体渲染密度可以理解为空间中的不透明度或者云雾的浓度

NeRF是通过体渲染积分(volumetric rendering integral)计算出最终的颜色C:

C = ∫(x,y,z)∈R r(x, y, z, θ, φ)σ(x, y, z, θ, φ)exp(-∫0tσ(r(s))ds)dt

其中r是射线方程,t是沿射线的距离。可以看出,最终的颜色C是网络预测的(r, g, b)与密度σ,以及体渲染积分的结合。

σ(x) 是点密度,可以解释为射线终止于位置 x 处的无穷小粒子的微分概率。

 

 

不透明度 ( \alpha_i ) 

( T_i ) 代表的是从光线起点到第 ( i ) 点之间的透射率 也就是这段路径上光线没有被吸收的量。因此,( T_i ) 实际上是一个衰减因子,它确保了只有未被前面的介质吸收的光线才能贡献到最终的颜色。

 

最终颜色 ( C ) 和不透明度 ( \alpha_i ) 成正比是因为不透明度决定了每一段路径对最终颜色的贡献。不透明度高的区域意味着光线在该区域被吸收得更多,因此这一区域对光线的颜色贡献也更大。

 

相关文章:

NeRF模型NeRF模型

参考视频:https://www.youtube.com/watch?vHfJpQCBTqZs&ab_channelVision%26GraphicsSeminaratMIT NeRF模型的输入输出: 输入: (x, y, z): 一个三维空间坐标,代表场景中的一个位置点(θ, φ): 视线方向,θ表示与y轴的夹角,φ表示与x轴的夹角,用两个角度可以…...

python爬虫(4)

#前期先说明一下为啥爬虫需要学习数组的存储和处理,只是说在你后期接触到最简单的爬虫后有一个地方可以存放你的数据# 下面为大家带来一个我在做excel表整理时的代码以及上次代码的结果 上次代码的结果: 新的代码: import numpy as np im…...

递归神经网络 (RNN) 及其变体 LSTM (长短期记忆) 和 GRU (门控循环单元)

递归神经网络(RNN, Recurrent Neural Networks)是一类用于处理序列数据的神经网络,特别适合于时间序列数据、语音、文本等连续数据的处理。RNN之所以独特,是因为它们在模型内部维持一个隐藏状态,该状态理论上可以捕获到…...

Redis的HyperLogLog原理介绍

Redis 的 HyperLogLog 数据结构实现了一种基于概率的基数估算算法,用于在占用极小内存的情况下估算一个集合中不重复元素(唯一值)的数量。以下是 HyperLogLog 算法的基本原理: 哈希函数: HyperLogLog 使用一个强散列函…...

微信小程序开发系列(二十六)·小程序运行机制(启动、前后台状态、挂起、销毁)和小程序更新机制

目录 1. 小程序运行机制 1.1 启动 1.2 前台和后台状态 1.3 挂起 1.4 销毁 2. 小程序更新机制 1. 小程序运行机制 1.1 启动 小程序启动可以分为两种情况,一种是冷启动,一种是热启动。 冷启动:如果用户首次打开,或小…...

百度信息流

计划: 流量选择 - 四个维度: 百度信息流 ; 整合了百度APP、WAP、PC各频道信息流和内容详情页的流量资源,广告和信息流内容资讯穿插展现;适合所有产品呢 好看视频; 汇集海量优质的视频内容,通过智能推荐算法为用户推送最适合的视频广告,视频广告在列表页有声…...

JAVA后端开发面试基础知识(十)——设计模式

创建型模式 创建型模式的作用就是创建对象,说到创建一个对象,最熟悉的就是 new 一个对象,然后 set 相关属性。但是,在很多场景下,我们需要给客户端提供更加友好的创建对象的方式,尤其是那种我们定义了类&am…...

红帽认证知识储备-Linux安全

Linux安全 内置安全机制 常见的系统用的centos中用的是SELinux,ubuntu用的是AppArmor,deepin什么都没用 SELINUX 定义 SELinux 是一个 Linux 内核安全模块,它增强了系统的安全性,通过实施强制访问控制策略来限制程序和用户对系…...

Rust 语言中的 dyn 关键字

在 Rust 中,&dyn Error 是一个指向动态类型的 Error trait 对象的引用。这里的 dyn 关键字用于表示一个动态分派的 trait 对象。动态分派允许你在运行时确定实际的对象类型,而不是在编译时。 dyn 关键字在 Rust 中用于替换早期版本中的 & 符号&…...

软件测试实战,Web项目网页bug定位详细分析总结(详全)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、前置条件 1&a…...

清除Mac OS上Xcode占用的空间

最近自己的Mac OS存储空间严重不足,想了一下,大概是从安装 Xcode 之后出现,在系统下通过 du 命令分析各目录大小,发现大概下面几个目录占用空间比较大,所以针对这几个名目录作了一下清理,释放了几十个G的空…...

开源的Java图片处理库介绍

在 Java 生态系统中,有几个流行的开源库可以用于图片处理。这些库提供了丰富的功能,如图像缩放、裁剪、颜色调整、格式转换等。以下是几个常用的 Java 图片处理库的介绍,包括它们的核心类、主要作用和应用场景,以及一些简单的例子…...

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor

arxiv 2023 08的论文 1 intro 1.1 人类流动性的独特性 人类流动性的独特特性在于其固有的规律性、随机性以及复杂的时空依赖性 ——>准确预测人们的行踪变得困难近期的研究利用深度学习模型的时空建模能力实现了更好的预测性能 但准确性仍然不足,且产生的结果…...

农场管理小程序|基于微信小程序的农场管理系统设计与实现(源码+数据库+文档)

农场管理小程序目录 目录 基于微信小程序的农场管理系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、用户信息管理 2、农场信息管理 3、公告信息管理 4、论坛信息管理 四、数据库设计 五、核心代码 七、最新计算机毕设选题推荐 八、源码获取&#x…...

【前端】vscode快捷键和实用Api整理

vscode的快捷键 创建a.html 生成模板 !回车 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" …...

抖音商家活动信息未在商详展示会有哪些处罚?

一、什么是「违规玩法-活动信息未在商详展示」? 什么是「违规玩法-活动信息未在商详展示」?由于当前平台未提供官方营销工具(例如免单、返现等)&#xff0c;但是创作者在进行商品推广(不仅限口播、画面、标题文案等)宣传该类营销玩法&#xff0c;未在商品商详页展示说明&…...

智慧公厕方案_智慧公厕解决方案_智慧公厕整体解决方案

一、什么是智慧公厕&#xff1f; 在现代城市化进程中&#xff0c;公共厕所是不可或缺的基础设施之一。然而&#xff0c;传统的公厕管理模式已经无法满足市民对高效、便捷厕所服务的需求。为了实现公共厕所的信息化管理&#xff0c;智慧公厕整体解决方案应运而生。智慧公厕具体…...

【Python】成功解决IndexError: list index out of range

【Python】成功解决IndexError: list index out of range &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望得到您的订…...

对于两个独立随机变量X,Y, E(XY)=E(X)E(Y)

两个独立随机变量X&#xff0c;Y的期望分别是E(X), E(Y), 其乘积XY的期望是多少&#xff1f; 我们可以利用期望的性质来求得XY的期望。由于X、Y是独立随机变量&#xff0c;因此它们的协方差为0&#xff0c;即&#xff1a; cov(X, Y) E(XY) - E(X)E(Y) 0 因此&#xff0c; …...

以题为例 浅谈前缀和算法

前缀求和算法是什么 前缀和算法就是以空间去换取时间&#xff0c;可用于快速求数组的区间和&#xff0c;它可以用于一维数组和二维数组&#xff0c;但我现在只接触了一维数组并没有接触二维数组&#xff0c;所以在这里先介绍一维数组前缀和相关的知识 前缀和典型代码 for(int…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂&#xff0c;难以孤立地评估各个组件的贡献&#xff0c;传统的检索方法在处理复杂推理任务时可能不够有效&#xff0c;特别是在需要理解实体间关系或多跳知识的情况下。先说结论&#xff0c;看完后感觉这个框架性能上不会比Grap…...