生成模型与判别模型
生成模型与判别模型
一、决策函数Y=f(X)或者条件概率分布P(Y|X)
监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y。这个模型的一般形式为决策函数Y=f(X)或者条件概率分布P(Y|X)。
决策函数Y=f(X):你输入一个X,它就输出一个Y,这个Y与一个阈值比较,根据比较结果判定X属于哪个类别。例如两类(w1和w2)分类问题,如果Y大于阈值,X就属于类w1,如果小于阈值就属于类w2。这样就得到了该X对应的类别了。
条件概率分布P(Y|X):你输入一个X,它通过比较它属于所有类的概率,然后输出概率最大的那个作为该X对应的类别。例如:如果P(w1|X)大于P(w2|X),那么我们就认为X是属于w1类的。
所以上面两个模型都可以实现对给定的输入X预测相应的输出Y的功能。实际上通过条件概率分布P(Y|X)进行预测也是隐含着表达成决策函数Y=f(X)的形式的。例如也是两类w1和w2,那么我们求得了P(w1|X)和P(w2|X),那么实际上判别函数就可以表示为Y= P(w1|X)/P(w2|X),如果Y大于1或者某个阈值,那么X就属于类w1,如果小于阈值就属于类w2。而同样,很神奇的一件事是,实际上决策函数Y=f(X)也是隐含着使用P(Y|X)的。因为一般决策函数Y=f(X)是通过学习算法使你的预测和训练数据之间的误差平方最小化,而贝叶斯告诉我们,虽然它没有显式的运用贝叶斯或者以某种形式计算概率,但它实际上也是在隐含的输出极大似然假设(MAP假设)。也就是说学习器的任务是在所有假设模型有相等的先验概率条件下,输出极大似然假设。
所以呢,分类器的设计就是在给定训练数据的基础上估计其概率模型P(Y|X)。如果可以估计出来,那么就可以分类了。但是一般来说,概率模型是比较难估计的。给一堆数给你,特别是数不多的时候,你一般很难找到这些数满足什么规律吧。那能否不依赖概率模型直接设计分类器呢?事实上,分类器就是一个决策函数(或决策面),如果能够从要解决的问题和训练样本出发直接求出判别函数,就不用估计概率模型了,这就是决策函数Y=f(X)的伟大使命了。例如支持向量机,我已经知道它的决策函数(分类面)是线性的了,也就是可以表示成Y=f(X)=WX+b的形式,那么我们通过训练样本来学习得到W和b的值就可以得到Y=f(X)了。还有一种更直接的分类方法,它不用事先设计分类器,而是只确定分类原则,根据已知样本(训练样本)直接对未知样本进行分类。包括近邻法,它不会在进行具体的预测之前求出概率模型P(Y|X)或者决策函数Y=f(X),而是在真正预测的时候,将X与训练数据的各类的Xi比较,和哪些比较相似,就判断它X也属于Xi对应的类。
二、生成方法和判别方法
监督学习方法又分生成方法(Generative approach)和判别方法(Discriminative approach),所学到的模型分别称为生成模型(Generative Model)和判别模型(Discriminative Model)。
判别方法:由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。
生成方法:由数据学习联合概率密度分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)。基本思想是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类,就像上面说的那样。注意了哦,这里是先求出P(X,Y)才得到P(Y|X)的,然后这个过程还得先求出P(X)。P(X)就是你的训练数据的概率分布。哎,刚才说了,需要你的数据样本非常多的时候,你得到的P(X)才能很好的描述你数据真正的分布。例如你投硬币,你试了100次,得到正面的次数和你的试验次数的比可能是3/10,然后你直觉告诉你,可能不对,然后你再试了500次,哎,这次正面的次数和你的试验次数的比可能就变成4/10,这时候你半信半疑,不相信上帝还有一个手,所以你再试200000次,这时候正面的次数和你的试验次数的比(就可以当成是正面的概率了)就变成5/10了。
还有一个问题就是,在机器学习领域有个约定俗成的说法是:不要去学那些对这个任务没用的东西。例如,对于一个分类任务:对一个给定的输入x,将它划分到一个类y中。那么,如果我们用生成模型:p(x,y)=p(y|x)·p(x)
那么,我们就需要去对p(x)建模,但这增加了我们的工作量,这让我们很不爽(除了上面说的那个估计得到P(X)可能不太准确外)。实际上,因为数据的稀疏性,导致我们都是被强迫地使用弱独立性假设去对p(x)建模的,所以就产生了局限性。所以我们更趋向于直观的使用判别模型去分类。
这样的方法之所以称为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。用于随机生成的观察值建模,特别是在给定某些隐藏参数情况下。典型的生成模型有:朴素贝叶斯和隐马尔科夫模型等。
三、生成模型和判别模型的优缺点
在监督学习中,两种方法各有优缺点,适合于不同条件的学习问题。
生成方法的特点:上面说到,生成方法学习联合概率密度分布P(X,Y),所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。但它不关心到底划分各类的那个分类边界在哪。生成方法可以还原出联合概率分布P(Y|X),而判别方法不能。生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型,当存在隐变量时,仍可以用生成方法学习。此时判别方法就不能用。
判别方法的特点:判别方法直接学习的是决策函数Y=f(X)或者条件概率分布P(Y|X)。不能反映训练数据本身的特性。但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。直接面对预测,往往学习的准确率更高。由于直接学习P(Y|X)或P(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
四、生成模型和判别模型的联系
由生成模型可以得到判别模型,但由判别模型得不到生成模型。
五、再形象点可以吗
例如我们有一个输入数据x,然后我们想将它分类为标签y。(迎面走过来一个人,你告诉我这个是男的还是女的)
生成模型学习联合概率分布p(x,y),而判别模型学习条件概率分布p(y|x)。
下面是个简单的例子:
例如我们有以下(x,y)形式的数据:(1,0), (1,0), (2,0), (2, 1)
那么p(x,y)是:
y=0 y=1-----------x=1 | 1/2 0x=2 | 1/4 1/4
而p(y|x) 是:
y=0 y=1-----------x=1 | 1 0x=2 | 1/2 1/2
我们为了将一个样本x分类到一个类y,最自然的做法就是条件概率分布p(y|x),这就是为什么我们对其直接求p(y|x)方法叫做判别算法。而生成算法求p(x,y),而p(x,y)可以通过贝叶斯方法转化为p(y|x),然后再用其分类。但是p(x,y)还有其他作用,例如,你可以用它去生成(x,y)对。
再假如你的任务是识别一个语音属于哪种语言。例如对面一个人走过来,和你说了一句话,你需要识别出她说的到底是汉语、英语还是法语等。那么你可以有两种方法达到这个目的:
1、学习每一种语言,你花了大量精力把汉语、英语和法语等都学会了,我指的学会是你知道什么样的语音对应什么样的语言。
2、不去学习每一种语言,你只学习这些语言模型之间的差别,然后再分类。意思是指我学会了汉语和英语等语言的发音是有差别的,我学会这种差别就好了。
那么第一种方法就是生成方法,第二种方法是判别方法。
生成算法尝试去找到底这个数据是怎么生成的(产生的),然后再对一个信号进行分类。基于你的生成假设,那么那个类别最有可能产生这个信号,这个信号就属于那个类别。判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类。
相关文章:
生成模型与判别模型
生成模型与判别模型 一、决策函数Yf(X)或者条件概率分布P(Y|X) 监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y。这个模型的一般形式为决策函数Yf(X)或者条件概率分布P(Y|X)。 …...

Kotlin lateinit 和 lazy 之间的区别 (翻译)
Kotlin 中的属性是使用var或val关键字声明的。Late init 和 lazy 都是用来初始化以后要用到的属性。 由于这两个关键字都用于声明稍后将要使用的属性,因此让我们看一下它们以及它们的区别。 Late Init 在下面的示例中,我们有一个变量 myClass࿰…...

Golang alpine Dockerfile 最小打包
最近在ubantu 上进行了 iris项目的alpine 版本打包,过程遇到了一些问题,记录一下。 golang版本 :1.18 系统:ubantu 代码结构 Dockfile内容 FROM alpine:latest MAINTAINER Si Wei<3320376695qq.com> ENV VERSION 1.1 ENV G…...

在NVIDIA JetBot Nano小车上更新WIFI驱动
前言:树莓派上的WIFI驱动类型比较多,经常有更好驱动的需求本文给出RealTek的无线WIFI模组,8821CU的驱动更新办法步骤第一 通过其他方式连接网络小车通过网线或者老的WIFI连接到网络上第二 构建驱动模块并下载驱动首先,我们需要打开一个ubuntu…...

2023年网络安全最应该看的书籍,弯道超车,拒绝看烂书
学习的方法有很多种,看书就是一种不错的方法,但为什么总有人说:“看书是学不会技术的”。 其实就是书籍没选对,看的书不好,你学不下去是很正常的。 一本好书其实不亚于一套好的视频教程,尤其是经典的好书…...

VSYNC研究
Vsync信号是SurfaceFlinger进程中核心的一块逻辑,我们主要从以下几个方面着手讲解。软件Vsync是怎么实现的,它是如何保持有效性的?systrace中看到的VSYNC信号如何解读,这些脉冲信号是在哪里打印的?为什么VSYNC-sf / VS…...
python gRPC:根据.protobuf文件生成py代码、grpc转换为http协议对外提供服务
文章目录python GRPC:根据.protobuf文件生成py代码grpcio-tools安装和使用python GRPC的官网示例grpc转换为http协议对外提供服务工作问题总结grpc-ecosystem/grpc-gateway/third_party/googleapis: warning: directory does not exist.python GRPC:根据…...

Allegro如何输出ODB文件操作指导
Allegro如何输出ODB文件操作指导 在PCB设计完成之后,需要输出生产文件用于生产加工,除了gerber文件可以用生产制造,ODB文件同样也可以用于生产,如下图 用Allegro如何输出ODB文件,具体操作如下 首先确保电脑上已经安装了ODB这个插件,版本不受限制点击File...

koa-vue的分页实现
1.引言 最近确实体会到了前端找工作的难处,不过大家还是要稳住心态,毕竟有一些前端大神说的有道理,前端发展了近20年,诞生了很多leader级别的大神,这些大神可能都没有合适的坑位,我们新手入坑自然难一些&am…...

安全开发基础 -- DAST,SAST,IAST简单介绍
安全开发基础-- DAST,SAST,IAST 简介 DAST 动态应用程序安全测试(Dynamic Application Security Testing)技术在测试或运行阶段分析应用程序的动态运行状态。它模拟黑客行为对应用程序进行动态攻击,分析应用程序的反…...

网络安全之暴力破解介绍及暴力破解Tomcat
网络安全之暴力破解介绍及应用场景一、暴力破解介绍1.1 暴力破解介绍1.2 暴力破解应用场景一、暴力破解Tomcat一、暴力破解介绍 1.1 暴力破解介绍 暴力破解字典:https://github.com/k8gege/PasswordDic 1.2 暴力破解应用场景 一、暴力破解Tomcat 登录Tomcat后台&a…...

Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道 - Nodejs
在我之前的文章 “Elastic:使用 Kafka 部署 Elastic Stack”,我构建了从 Beats > Kafka > Logstash > Elasticsearch 的管道。在今天的文章中,我将描述从 Nodejs > Kafka > Logstash > Elasticsearch 这样的一个数据流。在…...
记录一次es的性能调优
文章目录es性能调优启用g1垃圾回收器es性能调优 成都的es集群经常出现告警,查看日志发现 [gc][11534155] overhead, spent [38.3s] collecting in the last [38.6s]这是 JVM 垃圾回收过程中的一条日志,表示在最近 38.6 秒内,JVM 进行了一次…...

内核性能评估测试及具体修改操作步骤记录
步骤记录前言一、查看环境配置二、LRU缓存空间调整三、进程扫描时间间隔四、与其他内核对比的工作负载测试(另一个内核的编译)总结前言 记录的相关操作有:查看服务器硬件环境、LRU缓存大小修改、内核命名、内核编译以及进程执行周期的设置。…...

S7-200smart远程无线模拟量信号采集案例
本参考方案使用西门子PLCS7-200SMART 结合无线通讯终端DTD434MC和DTD433F实现 PLC对远端设备模拟量的远程无线输入输出查询控制。所使用到的设备:西门子S7-200smartPLC无线数据终端DTD434MC无线模拟量信号测控终端DTD433F所使用的协议:ModbusRTU协议方案…...

Blender Python材质处理入门
本文介绍在 Blender 中如何使用 Python API 获取材质及其属性。 推荐:用 NSDT场景设计器 快速搭建3D场景。 1、如何获取材质 方法1、 获取当前激活的材质 激活材质是当前在材质槽中选择的材料。 如果你选择一个面,则活动材料将更改为分配给选定面的材质…...

ChatGPT后劲很大,问题也是
ChatGPT亮相即封神,最初的访客是程序员、工程师、AI从业者、投资人,最后是无数懵懂又好奇的普通人:ChatGPT是什么?自己会被ChatGPT取代吗?看待ChatGPT的立场也是两个极端: 快乐,是因为ChatGPT太…...

世界那么大,你哪都别去了,来我带你了解CSS3 (二)
文章目录❤️🔥CSS文档流❤️🔥CSS浮动❤️🔥CSS定位❤️🔥CSS媒体查询❤️🔥CSS文档流 文档流是文档中可显示对象在排列时所占用的位置/空间。 例如:块元素自上而下摆放,内…...

2023年再不会Redis,就要被淘汰了
目录专栏导读一、同样是缓存,用map不行吗?二、Redis为什么是单线程的?三、Redis真的是单线程的吗?四、Redis优缺点1、优点2、缺点五、Redis常见业务场景六、Redis常见数据类型1、String2、List3、Hash4、Set5、Zset6、BitMap7、Bi…...

Java SPI机制了解与应用
1. 了解SPI机制 我们在平时学习和工作中总是会听到Java SPI机制,特别是使用第三方框架的时候,那么什么是SP机制呢?SPI 全称 Service Provider Interface,是 Java 提供的一套用来被第三方实现或者扩展的接口,它可以用来…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...