当前位置: 首页 > news >正文

【YOLOv8模型网络结构图理解】

在这里插入图片描述

YOLOv8模型网络结构图理解

  • 1 YOLOv8的yaml配置文件
  • 2 YOLOv8网络结构
    • 2.1 Conv
    • 2.2 C3与C2f
    • 2.3 SPPF
    • 2.4 Upsample
    • 2.5 Detect层

1 YOLOv8的yaml配置文件

YOLOv8的配置文件定义了模型的关键参数和结构,包括类别数、模型尺寸、骨干(backbone)和头部(head)结构。这些配置决定了模型的性能和复杂性。

下面是YOLOv8的配置文件和参数的解释:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # 类别数目,nc代表"number of classes",即模型用于检测的对象类别总数。 80表示该模型配置用于检测80种不同的对象。由于默认使用COCO数据集,这里nc=80;
scales: # 模型复合缩放常数,用于定义模型的不同尺寸和复杂度。例如 'model=yolov8n.yaml' 将调用带有 'n' 缩放的 yolov8.yaml# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n概览:225层, 3157200参数, 3157184梯度, 8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s概览:225层, 11166560参数, 11166544梯度, 28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m概览:295层, 25902640参数, 25902624梯度, 79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l概览:365层, 43691520参数, 43691504梯度, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x概览:365层, 68229648参数, 68229632梯度, 258.5 GFLOPs# YOLOv8.0n backbone 骨干层
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2 第0层,-1代表将上层的输出作为本层的输入。第0层的输入是640*640*3的图像。Conv代表卷积层,相应的参数:64代表输出通道数,3代表卷积核大小k,2代表stride步长。卷积后输出的特征图尺寸为320*320*64,长宽为初始图片的1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4 第1层,本层和上一层是一样的操作(128代表输出通道数,3代表卷积核大小k,2代表stride步长)。卷积后输出的特征图尺寸为160*160*128,长宽为初始图片的1/4- [-1, 3, C2f, [128, True]] # 第2层,本层是C2f模块,3代表本层重复3次。128代表输出通道数,True表示Bottleneck有shortcut。输出的特征图尺寸为160*160*128。- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8 第3层,进行卷积操作(256代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为80*80*256(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/8。- [-1, 6, C2f, [256, True]] # 第4层,本层是C2f模块,可以参考第2层的讲解。6代表本层重复6次。256代表输出通道数,True表示Bottleneck有shortcut。经过这层之后,特征图尺寸依旧是80*80*256。- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16 第5层,进行卷积操作(512代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为40*40*512(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/16。- [-1, 6, C2f, [512, True]] # 第6层,本层是C2f模块,可以参考第2层的讲解。6代表本层重复6次。512代表输出通道数,True表示Bottleneck有shortcut。经过这层之后,特征图尺寸依旧是40*40*512。- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32 第7层,进行卷积操作(1024代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为20*20*1024(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/32。- [-1, 3, C2f, [1024, True]] #第8层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。1024代表输出通道数,True表示Bottleneck有shortcut。经过这层之后,特征图尺寸依旧是20*20*1024。- [-1, 1, SPPF, [1024, 5]]  # 9 第9层,本层是快速空间金字塔池化层(SPPF)。1024代表输出通道数,5代表池化核大小k。结合模块结构图和代码可以看出,最后concat得到的特征图尺寸是20*20*(512*4),经过一次Conv得到20*20*1024。# YOLOv8.0n head 头部层
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 第10层,本层是上采样层。-1代表将上层的输出作为本层的输入。None代表上采样的size=None(输出尺寸)不指定。2代表scale_factor=2,表示输出的尺寸是输入尺寸的2倍。mode=nearest代表使用的上采样算法为最近邻插值算法。经过这层之后,特征图的长和宽变成原来的两倍,通道数不变,所以最终尺寸为40*40*1024。- [[-1, 6], 1, Concat, [1]]  # cat backbone P4 第11层,本层是concat层,[-1, 6]代表将上层和第6层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是40*40*1024,第6层的输出是40*40*512,最终本层的输出尺寸为40*40*1536。- [-1, 3, C2f, [512]]  # 12 第12层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。512代表输出通道数。与Backbone中C2f不同的是,此处的C2f的bottleneck模块的shortcut=False。- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 第13层,本层也是上采样层(参考第10层)。经过这层之后,特征图的长和宽变成原来的两倍,通道数不变,所以最终尺寸为80*80*512。- [[-1, 4], 1, Concat, [1]]  # cat backbone P3 第14层,本层是concat层,[-1, 4]代表将上层和第4层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是80*80*512,第6层的输出是80*80*256,最终本层的输出尺寸为80*80*768。- [-1, 3, C2f, [256]]  # 15 (P3/8-small) 第15层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。256代表输出通道数。经过这层之后,特征图尺寸变为80*80*256,特征图的长宽已经变成输入图像的1/8。- [-1, 1, Conv, [256, 3, 2]] # 第16层,进行卷积操作(256代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为40*40*256(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样)。- [[-1, 12], 1, Concat, [1]]  # cat head P4 第17层,本层是concat层,[-1, 12]代表将上层和第12层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是40*40*256,第12层的输出是40*40*512,最终本层的输出尺寸为40*40*768。- [-1, 3, C2f, [512]]  # 18 (P4/16-medium) 第18层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。512代表输出通道数。经过这层之后,特征图尺寸变为40*40*512,特征图的长宽已经变成输入图像的1/16。- [-1, 1, Conv, [512, 3, 2]] # 第19层,进行卷积操作(512代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为20*20*512(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样)。- [[-1, 9], 1, Concat, [1]]  # cat head P5 第20层,本层是concat层,[-1, 9]代表将上层和第9层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是20*20*512,第9层的输出是20*20*1024,最终本层的输出尺寸为20*20*1536。- [-1, 3, C2f, [1024]]  # 21 (P5/32-large) 第21层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。1024代表输出通道数。经过这层之后,特征图尺寸变为20*20*1024,特征图的长宽已经变成输入图像的1/32。- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5) 第20层,本层是Detect层,[15, 18, 21]代表将第15、18、21层的输出(分别是80*80*256、40*40*512、20*20*1024)作为本层的输入。nc是数据集的类别数。
1. nc
含义: nc代表"number of classes",即模型用于检测的对象类别总数。
示例中的值: 80表示该模型配置用于检测80种不同的对象。由于默认使用COCO数据集,这里nc=80;2. scales
含义: scales用于定义模型的不同尺寸和复杂度,它包含一系列缩放参数。
子参数: n, s, m, l, x表示不同的模型尺寸,每个尺寸都有对应的depth(深度)、width(宽度)和max_channels(最大通道数)。
depth: 表示深度因子,用来控制一些特定模块的数量的,模块数量多网络深度就深;
width: 表示宽度因子,用来控制整个网络结构的通道数量,通道数量越多,网络就看上去更胖更宽;
max_channels: 最大通道数,为了动态地调整网络的复杂性。在 YOLO 的早期版本中,网络中的每个层都是固定的,这意味着每个层的通道数也是固定的。但在 YOLOv8 中,为了增加网络的灵活性并使其能够更好地适应不同的任务和数据集,引入了 max_channels 参数。3. backbone
主干网络是模型的基础,负责从输入图像中提取特征。这些特征是后续网络层进行目标检测的基础。在YOLOv8中,主干网络采用了类似于CSPDarknet的结构。
含义: backbone部分定义了模型的基础架构,即用于特征提取的网络结构。
关键组成:
[from, repeats, module, args]表示层的来源、重复次数、模块类型和参数。
from:表示该模块的输入来源,如果为-1则表示来自于上一个模块的输出,如果为其他具体的值则表示从特定的模块中得到输入信息;
repeats: 这个参数用于指定一个模块或层应该重复的次数。例如,如果想让某个卷积层重复三次,你可以使用 repeats=3。
module: 这个参数用于指定要添加的模块或层的类型。例如,如果想添加一个卷积层,可以使用 conv 作为模块类型。
args: 这个参数用于传递给模块或层的特定参数。例如,如果想指定卷积层的滤波器数量,可以使用 args=[filters]。
Conv表示卷积层,其参数指定了输出通道数、卷积核大小和步长。
C2f可能是一个特定于YOLOv8的自定义模块。
SPPF是空间金字塔池化层,用于在多个尺度上聚合特征。4. head
含义: head部分定义了模型的检测头,即用于最终目标检测的网络结构。
关键组成:
nn.Upsample表示上采样层,增加特征图的空间分辨率,用于放大特征图。
Concat表示连接层,特征图拼接,用于合并来自不同层的特征。
C2f层再次出现,可能用于进一步处理合并后的特征。
Detect层是最终的检测层,负责输出检测结果。

2 YOLOv8网络结构

在这里插入图片描述

Backbone主干网络是模型的基础,负责从输入图像中提取特征。这些特征是后续网络层进行目标检测的基础。 在YOLOv8中,主干网络采用了类似于CSPDarknet的结构。

Head头部网络是目标检测模型的决策部分,负责产生最终的检测结果。

Neck颈部网络位于主干网络和头部网络之间,它的作用是进行特征融合和增强。

其他细节:

  • ConvModule:包含卷积层、BN(批量归一化)和激活函数(如SiLU),用于提取特征。
  • DarknetBottleneck:通过residual connections增加网络深度,同时保持效率。
  • CSP Layer:CSP结构的变体,通过部分连接来提高模型的训练效率

输出的特征图大小计算公式:f_out = ((f_in - k + 2*p ) / s ) 向下取整 +1

Bbox Loss(边界框回归损失)用于计算预测边界框与真实边界框之间的差异。均方误差(MSE)是一个常用的损失函数,它在较大误差时赋予更高的惩罚,这有助于模型快速修正大的预测错误。因此,Bbox Loss计算预测与实际坐标之间的差异的平方和,其计算公式如下:
L o s s b b o x = ∑ i = 1 N ( x i − x ^ i ) 2 Loss_{bbox}=\sum_{i=1}^N{(x_i-\hat{x}_i)^2} Lossbbox=i=1N(xix^i)2
其中, x i {x}_i xi表示真实边界框的坐标, x ^ i \hat{x}_i x^i表示预测边界框的坐标。该损失函数作为优化目标,引导模型在训练过程中减少预测框和真实框之间的差距。

Cls Loss(分类损失)用于衡量模型预测的类别分布与真实标签之间的差异。交叉熵损失函数是分类任务中常用的一种损失函数,对于错误预测给出了很大的惩罚,尤其是在预测的概率和实际标签相差很大时。因此,Cls Loss帮助模型在分类问题中优化其预测,使预测概率分布尽可能接近真实的标签分布,其计算公式为:
L o s s c l s = − ∑ c = 1 M y o , c l o g ( p o , c ) Loss_{cls}=-\sum_{c=1}^My_{o,c}log(p_o,c) Losscls=c=1Myo,clog(po,c)
其中, y o , c y_{o,c} yo,c是一个指示器。如果样本o属于类别c,则为1,反之为0。 p o p_o po是模型预测样本o属于类别c的概率。

2.1 Conv


def autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))

2.2 C3与C2f

在这里插入图片描述

# 整个过程就是cv1接上了n个bottleneck模块再与cv2进行concat操作,最后在进行一次cv3的Conv。所以经过了C3模块,输出特征图尺寸是h*w*cout
class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1) #上图最左边的CBS模块self.cv2 = Conv(c1, c_, 1, 1) #上图中间的CBS模块self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2) 上图最右边的CBS模块self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) # 接上了n个Bottleneck模块def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

对比C3模块和C2f模块,可以看到C2f获得了更多的梯度流信息(参考了YOLOv7的ELAN模块的思想):

在这里插入图片描述

class C2f(nn.Module):# CSP Bottleneck with 2 convolutionsdef __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1) # 最左边的CBS模块self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2) 最右边的CBS模块self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) # 接上了n个Bottleneck模块def forward(self, x):# tensor.chunk(chunk数,维度)y = list(self.cv1(x).chunk(2, 1)) #先将输入特征图cv1卷积,然后chunk分2块y.extend(m(y[-1]) for m in self.m) #表示被切分的最后一块,即第二块,把第二块放进n个连续的Bottleneck里,加到y列表的尾部,y就变成了2+n块return self.cv2(torch.cat(y, 1)) #将y按第一维度拼接在一起,然后进行cv2卷积操作。def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expandsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

2.3 SPPF

class SPPF(nn.Module):# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocherdef __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)def forward(self, x):x = self.cv1(x)y1 = self.m(x)y2 = self.m(y1)return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

2.4 Upsample

torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)

2.5 Detect层

class Detect(nn.Module):# YOLOv8 Detect head for detection modelsdynamic = False  # force grid reconstructionexport = False  # export modeshape = Noneanchors = torch.empty(0)  # initstrides = torch.empty(0)  # initdef __init__(self, nc=80, ch=()):  # detection layersuper().__init__()self.nc = nc  # number of classesself.nl = len(ch)  # number of detection layersself.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = nc + self.reg_max * 4  # number of outputs per anchorself.stride = torch.zeros(self.nl)  # strides computed during buildc2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc)  # channelsself.cv2 = nn.ModuleList(nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()def forward(self, x):shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapeif self.export and self.format == 'edgetpu':  # FlexSplitV ops issuex_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)box = x_cat[:, :self.reg_max * 4]cls = x_cat[:, self.reg_max * 4:]else:box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.stridesy = torch.cat((dbox, cls.sigmoid()), 1)return y if self.export else (y, x)def bias_init(self):# Initialize Detect() biases, WARNING: requires stride availabilitym = self  # self.model[-1]  # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequencyfor a, b, s in zip(m.cv2, m.cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)class DFL(nn.Module):# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391def __init__(self, c1=16):super().__init__()self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)x = torch.arange(c1, dtype=torch.float)self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))self.c1 = c1def forward(self, x):b, c, a = x.shape  # batch, channels, anchorsreturn self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)

相关文章:

【YOLOv8模型网络结构图理解】

YOLOv8模型网络结构图理解 1 YOLOv8的yaml配置文件2 YOLOv8网络结构2.1 Conv2.2 C3与C2f2.3 SPPF2.4 Upsample2.5 Detect层 1 YOLOv8的yaml配置文件 YOLOv8的配置文件定义了模型的关键参数和结构,包括类别数、模型尺寸、骨干(backbone)和头部…...

付强:基于注意力机制的听觉前端处理 | 嘉宾公布

一、智能家居与会议系统专题论坛 智能家居与会议系统专题论坛将于3月28日同期举办! 智能会议系统它通过先进的技术手段,提高了会议效率,降低了沟通成本,提升了参会者的会议体验。对于现代企业、政府机构和学术界是不可或缺的。在这…...

C++_包装器

目录 1、包装器的用法 2、包装器的类型 3、包装器的作用 4、包装成员函数 5、bind(绑定) 5.1 bind的用法 5.2 bind减少参数个数 结语 前言: C11的包装器,总称为function包装器,而包装器又称适配器…...

3588板子部署yoloV5

一 :准备 ubuntu linux X86_64系统 a.安装anaconda b.创建虚拟环境 python3.8 二: 下载rknn-toolkit2 传送门 unzip 解压文件夹 三:pt转onnx模型 四:onnx转rknn模型 a:cd到rknn-toolkit2-master/rknn-toolkit2/packag…...

解决GitHub提交时不显示自己的头像 显示另一个账号(其实也是自己)

git show 看看是否是自己的githup 账号的邮箱 如果不是进行下列操作 git config user.email “你的邮箱地址”,修改邮箱 修改完以后输入git config user.email 检查是否修改成了你的邮箱 如果你想其他项目提交时,也避免此类情况,把上面的两条命令改成 (1&#…...

VUE_vue2/3点击区域外触发方法,点击除某个元素触发监听

Vue2 1、自定义指令 // 自定义指令,用于处理点击外部区域的事件 const clickOutside {bind(el, binding) {// 在元素上绑定一个点击事件监听器el.clickOutsideEvent function (event) {// 检查点击事件是否发生在元素的内部if (!(el event.target || el.contai…...

SpringCloud(20)之Skywalking Agent原理剖析

一、Agent原理剖析 使用Skywalking的时候,并没有修改程序中任何一行 Java 代码,这里便使用到了 Java Agent 技术,我 们接下来展开对Java Agent 技术的学习。 1.1 Java Agent Java Agent 是从 JDK1.5 开始引入的,算是一个比较老的…...

容器(0)-DOCKERFILE-安装-常用命令-部署-迁移备份-仓库

1.安装 启动 systemclt start docker //启动 systemctl status docker //状态 docker info systemclt stop docker systemctl status docker systemctl enable docker //开机启动 2.常用命令 镜像查看 docker images 镜像查看 docker status 镜像拉取 docker pull centos:…...

低功耗DC-DC电压调整器IU5528D

IU5528D是一款超微小型,超低功耗,高效率,升降压一体DC-DC调整器。适用于双节,三节干电池或者单节锂电池的应用场景。可以有效的延长电池的使用时间。IU5528D由电流模PWM控制环路,误差放大器,比较器和功率开关等模块组成。该芯片可在较宽负载范围内高效稳…...

【备战蓝桥杯系列】单源最短路径Dijkstra算法模板

Dijkstra算法模板 蓝桥杯中也是会考到图论最短路的,一旦考到,基本是不会太难的,只要知道板子就基本能拿分了。 两个板子如下 朴素Dijkstra算法 适应情况:稠密图,正权边 时间复杂度 O(n^2 m) int dijkst(){memse…...

嵌入式系统中端口号的理解与分析

每当看到有人的简历上写着熟悉 tcp/ip, http 等协议时, 我就忍不住问问他们: 你给我说说, 端口是啥吧! 可惜, 很少有人能说得让人满意... 所以这次就来谈谈端口(port), 这个熟悉的陌生人. 在此过程中, 还会谈谈间接层, naming service 等概念, IoC, 依赖倒置等原则以及 TCP 协议…...

3.自定义工程目录配置CMakeLists

问题背景 熟悉stm32keil开发的都知道,我们在编写不同的外设时,通常都会单独编写一个app文件夹或者是user文件夹之类的来存放不同外设功能的源文件和头文件。 在前面一节2.构建第一个工程并烧录到ESP32开发板-CSDN博客中,我们是使用了一个乐鑫…...

Vue3.0里为什么要用 Proxy API 替代 defineProperty API

一、Object.defineProperty 定义:Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性,并返回此对象 为什么能实现响应式 通过defineProperty 两个属性,get及set get 属性的 getter 函…...

c++初阶------类和对象(下)

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…...

PMP考试:如何高效学习PMBOK?

PMBOK(项目管理知识体系指南)是PMP考试的核心教材,学习PMBOK对于备考PMP考试至关重要。那么我将分享一些高效学习PMBOK的方法和技巧,帮助同学们更好地掌握项目管理知识。 一、制定学习计划 在学习PMBOK之前,制定一个详…...

个人博客网站前端页面的实现

博客网站前端页面的实现 博客登录页 相关代码 login.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><…...

Kotlin Retrofit 网络请求

一、添加依赖&#xff1a; //Retrofit 网络请求implementation("com.squareup.retrofit2:retrofit:2.3.0")implementation("com.squareup.retrofit2:converter-gson:2.3.0")//json转换 二、创建单例类&#xff1a; package com.example.buju.httpimport …...

pyside6 pytq PyDracula QVideoWidget视频只有声音没有画面

解决方案&#xff1a; 先不使用框架&#xff0c;纯pyside6代码&#xff0c;如果添加视频有画面有声音&#xff0c;那可以排除是硬件问题&#xff0c;如果没有画面只有声音&#xff0c;可能是视频解码器无法解码&#xff0c;换个格式的视频文件如果只有使用PyDracula 出问题&am…...

Python爬网页,不确定网页的编码,不需要用第三方库

Python爬网页&#xff0c;不确定网页的编码&#xff0c;不需要用第三方库&#xff0c;自己写个判断&#xff0c;乱拳打死老师傅 detect试了&#xff0c;不好用 apparent_encoding试了&#xff0c;不好用 encoding试了&#xff0c;不好用 headers里get试了&#xff0c;不好用…...

Web测试的基础流程(外加测试过程需要的注意5点)

前言 在Web工程过程中&#xff0c;基于Web系统的测试、确认和验收是一项重要而富有挑战性的工作。基于Web的系统测试与传统的软件测试不同&#xff0c;它不但需要检查和验证是否按照设计的要求运行&#xff0c;而且还要测试系统在不同用户的浏览器端的显示是否合适。 重要的是…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...