当前位置: 首页 > news >正文

Objective-C blocks 概要

1.block的使用

1.1什么是block?

Blocks是C语言的扩充功能:带有自动变量(局部变量)的匿名函数。

“带有自动变量”在Blocks中表现为“截取自动变量"
“匿名函数”就是“不带名称的函数”

块,封装了函数调用及调用环境的OC对象

  • block的声明
// 1.
@property (nonatomic, copy) void(^myBlock1)(void);
// 2.BlockType:类型别名
typedef void(^BlockType)(void);
@property (nonatomic, copy) BlockType myBlock2;
// 3.
// 返回值类型(^block变量名)(参数1类型,参数2类型,...)
void(^block)(void);
  • block的定义
    // ^返回值类型(参数1,参数2,...){};// 1.无返回值,无参数void(^block1)(void) = ^{};// 2.无返回值,有参数void(^block2)(int) = ^(int a){};// 3.有返回值,无参数(不管有没有返回值,定义的返回值类型都可以省略)int(^block3)(void) = ^int{return 3;};// 以上Block的定义也可以这样写:int(^block4)(void) = ^{return 3;};// 4.有返回值,有参数int(^block5)(int) = ^int(int a){return 3 * a;};
  • block的调用
    // 1.无返回值,无参数block1();// 2.有返回值,有参数int a = block5(2)

2.block的底层数据结构

通过Clang将以下的OC代码转化为C++代码

// Clang
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m

//main.m
#import <Foundation/Foundation.h>int main(int argc, const char * argv[]) {@autoreleasepool {void(^block)(void) = ^{NSLog(@"我是 block");};block();}return 0;
}

转化为C++代码

//参数结构体
struct __main_block_impl_0 {struct __block_impl impl;// block 结构体struct __main_block_desc_0* Desc;// block 的描述对象
/*
block 的构造函数** 返回值:__main_block_impl_0 结构体** 参数一:__main_block_func_0 结构体** 参数二:__main_block_desc_0 结构体的地址** 参数三:flags 标识位
*/__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {impl.isa = &_NSConcreteStackBlock;// &_NSConcreteStackBlock 表示存储在栈上impl.Flags = flags;impl.FuncPtr = fp;Desc = desc;}
};//block 结构体
struct __block_impl {void *isa;//block 的类型int Flags;int Reserved;void *FuncPtr;// block的执行函数指针,指向__main_block_func_0
};//封装了 block 中的代码
//参数是__main_block_impl_0结构体的指针
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {NSLog((NSString *)&__NSConstantStringImpl__var_folders_yx_7jg_wdg128v45l4cn_1g265h0000gn_T_main_03dcda_mi_0);}static struct __main_block_desc_0 {size_t reserved;size_t Block_size;// block 所占的内存空间
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};int main(int argc, const char * argv[]) {/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
/*** void(^block)(void) = ^{NSLog(@"调用了block");};** 定义block的本质:** 调用__main_block_impl_0()构造函数** 并且给它传了两个参数 __main_block_func_0 和 &__main_block_desc_0_DATA** __main_block_func_0 封装了block里的代码** 拿到函数的返回值,再取返回值的地址 &__main_block_impl_0,** 把这个地址赋值给 block*/void(*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
/*** block();** 调用block的本质:** 通过 __main_block_impl_0 中的 __block_impl 中的 FuncPtr 拿到函数地址,直接调用*/    ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);}return 0;
}

3.block的变量捕获机制

  • 对于全局变量,不会捕获到block内部,访问方为直接访问
  • 对于auto类型的局部变量,会捕获到block内部,block内部会自动生成一个成员变量,访问方式为值传递
  • 对于static类型的局部变量,会捕获到block内部,block内部会自动生成一个成员变量,访问方式为指针传递
  • 对于对象类型的局部变量,block会连同修饰符一起捕获

3.1 auto自动变量

将以下 OC 代码转换为 C++ 代码,并贴出部分变动代码

int main(int argc, const char * argv[]) {@autoreleasepool {int age = 10;void(^block)(void) = ^{NSLog(@"%d",age);};block();}return 0;
}
struct __main_block_impl_0 {struct __block_impl impl;struct __main_block_desc_0* Desc;int age;//生成的变量__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=0) : age(_age) {impl.isa = &_NSConcreteStackBlock;impl.Flags = flags;impl.FuncPtr = fp;Desc = desc;}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {int age = __cself->age; // bound by copyNSLog((NSString *)&__NSConstantStringImpl__var_folders_yx_7jg_wdg128v45l4cn_1g265h0000gn_T_main_40c716_mi_0,age);}

可以看出:

  • 在__main_block_impl_0结构体中会自动生成一个相同类型的age变量
  • 构造函数__main_block_impl_0中多出了一个age参数,用来捕获外部的变量

由于传递方式为值传递,所以我们在block外部修饰age变量时,不会影响到block中的age变量

总的来说,所谓“截获自动变量”意味着在执行Block语法时,Block语法表达式所用的自动变量被保存到Block的结构体实例中(即Block自身)中

3.2static类型的局部变量

将以下OC代码转化为C++代码,并贴出部分变动代码

    static int age = 10;void(^block)(void) = ^{NSLog(@"%d",age);};age = 20;block();// 20
struct __main_block_impl_0 {struct __block_impl impl;struct __main_block_desc_0* Desc;int *age;__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_age, int flags=0) : age(_age) {impl.isa = &_NSConcreteStackBlock;impl.Flags = flags;impl.FuncPtr = fp;Desc = desc;}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {int *age = __cself->age; // bound by copyNSLog((NSString *)&__NSConstantStringImpl__var_folders_yx_7jg_wdg128v45l4cn_1g265h0000gn_T_main_cb7943_mi_0,(*age));}

可以看出:

  • __main_block_impl_0结构体中生成了一个相同类型的age变量
  • __main_block_impl_0构造函数多了个参数,用来捕获外部的age变量的地址

由于传递方式是指针传递,所以修改局部变量age时,age的值会随之变化

3.3全局变量

将以下OC代码转化为C++代码,并贴出部分变动代码

int height = 10;
static int age = 20;
int main(int argc, const char * argv[]) {@autoreleasepool {void(^block)(void) = ^{NSLog(@"%d,%d",height,age);};block();}return 0;
}
int height = 10;
static int age = 20;struct __main_block_impl_0 {struct __block_impl impl;struct __main_block_desc_0* Desc;__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {impl.isa = &_NSConcreteStackBlock;impl.Flags = flags;impl.FuncPtr = fp;Desc = desc;}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {NSLog((NSString *)&__NSConstantStringImpl__var_folders_yx_7jg_wdg128v45l4cn_1g265h0000gn_T_main_7a340f_mi_0,height,age);}

可以看出:

  1. __main_block_impl_0结构体中,并没有自动生成age和height全局变量,也就是说没有将变量捕获到block内部

虽然block语法的匿名函数部分简单地变换为了C语言函数,但从这个变换的函数中访问静态全局变量/全局变量并没有任何改变,可直接使用。

但是静态变量的情况下,转换后的函数原本就设置在含有Block语法的函数外,所以无法从变量作用域访问

为什么局部变量需要捕获,而全局变量不用呢?

  • 作用域的原因,全局变量哪里都可以直接访问,所以不用捕获
  • 局部变量,外部不能直接访问,所以需要捕获
  • auto类型的局部变量可能会销毁,其内存会消失,block将来执行代码的时候不可能再去访问呢块内存,所以捕获其值
  • static变量会一直保存在内存中,所以捕获其地址即可

3.4 _block修饰的变量

3.4.1 _block的使用

默认情况下block是不能修改外面的auto变量,解决办法?

  • 变量用static修饰(原因:捕获static类型的局部变量是指针传递,可以访问到该变量的内存地址
  • 全局变量
  • _block(我们只是希望临时用一下这个变量临时改一下而已,而改为static变量和全局变量会一直在内存中)
3.4.2 _block修饰符
  • _block同于解决block内部无法修改auto变量值的问题;
  • _block不能修饰全局变量,静态变量;
  • 编译器会将_block变量包装成一个对象(struct __Block_byref_age_0byref:按地址传递));
  • 加_block修饰不会改变变量的性质,他还是auto变量;
  • 一般情况,对捕获变量进行赋值(赋值!=使用)操作需要添加_block修饰符,比如给数组添加或删除对象,就不用加_bolck修饰符;
  • 在 MRC 下使用 __block 修饰对象类型,在 block 内部不会对该对象进行 retain 操作,所以在 MRC 环境下可以通过 __block 解决循环引用的问题;

将以下 OC 代码转换为 C++ 代码,并贴出部分变动代码

int main(int argc, const char * argv[]) {@autoreleasepool {__block int age = 10;void(^block)(void) = ^{age = 20;NSLog(@"block-%d",age);};block();NSLog(@"%d",age);}return 0;
}
struct __Block_byref_age_0 {void *__isa;
__Block_byref_age_0 *__forwarding;//持有指向该实例自身的指针int __flags;int __size;int age;
};struct __main_block_impl_0 {struct __block_impl impl;struct __main_block_desc_0* Desc;__Block_byref_age_0 *age; // by ref__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_age_0 *_age, int flags=0) : age(_age->__forwarding) {impl.isa = &_NSConcreteStackBlock;impl.Flags = flags;impl.FuncPtr = fp;Desc = desc;}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {__Block_byref_age_0 *age = __cself->age; // bound by ref(age->__forwarding->age) = 20;NSLog((NSString *)&__NSConstantStringImpl__var_folders_yx_7jg_wdg128v45l4cn_1g265h0000gn_T_main_75529b_mi_0,(age->__forwarding->age));}
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->age, (void*)src->age, 8/*BLOCK_FIELD_IS_BYREF*/);}static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->age, 8/*BLOCK_FIELD_IS_BYREF*/);}

可以看出:

  • 编译器会将_block修饰的变量包装成一个__Block_byref_age_0结构体对象
  • 以上age = 20 的赋值过程:通过block的__main_block_func_0结构体实例中( __Block_byref_age_0)类型的age指针,找到 __Block_byref_age_0结构体的对象, __Block_byref_age_0结构体对象持有指向实例本身的__forwarding指针,通过成员变量_forwarding访问 __Block_byref_age_0结构体里的age变量,并将值改为20;

在这里插入图片描述

相关文章:

Objective-C blocks 概要

1.block的使用 1.1什么是block&#xff1f; Blocks是C语言的扩充功能&#xff1a;带有自动变量&#xff08;局部变量&#xff09;的匿名函数。 “带有自动变量”在Blocks中表现为“截取自动变量" “匿名函数”就是“不带名称的函数” 块&#xff0c;封装了函数调用及调用…...

Linux操作系统-07-Linux安装应用

一、使用rpm安装应用&#xff08;不推荐&#xff09; 先下载到本地&#xff0c;以.rpm文件名结尾&#xff0c;下载完成后&#xff0c;再安装 rpm -qa | grep mysql #查询当前系统是否有下载过mysql包 先上传mysql的rpm安装包到linux的opt目录 安装 rpm -ivh …...

DevOps实战:Docker、Kubernetes与Jenkins的完美融合

DevOps与容器化技术&#xff1a;Docker、Kubernetes和Jenkins 引言 在软件开发领域&#xff0c;DevOps文化和容器化技术已经成为当今最热门的话题之一。DevOps的目标是缩短开发和运维之间的距离&#xff0c;提高软件交付的速度和质量。而容器化技术&#xff0c;如Docker和Kub…...

Python面向对象——程序架构

需求 创建图形管理器 -记录多种图形(圆形、矩形.) --提供计算总面积的方法&#xff0c; 要求:增加新图形&#xff0c;不影响图形管理器 测试: 创建图形管理器&#xff0c;存储多个图形对象。 通过图形管理器&#xff0c;调用计算总面积方法 思路 ​​​​​​​ 代码 # ------…...

springboot单体项目链路日志跟踪及接口耗时

最近接触一个新的传统项目,在联调过程中,查看日志特别不方便,既无trackId,即无接口耗时,所以写了该博客。话不多说,直接上代码 1、实体类user package com.yk.domain;import lombok.Data;@Data public class User {private Long id;private String username;private St…...

力扣hot---岛屿数量

dfs思路&#xff1a; 首先通过两层for循环遍历每一个点&#xff0c;如果这个点为0或者2&#xff08;这个2是什么呢&#xff1f;是在遍历该点以及该点连成的这一片区域中&#xff0c;因为通过深度优先搜索&#xff0c;遍历该点就等于遍历这一片区域&#xff0c;遍历这篇区域中的…...

如何在Linux使用docker安装Plik并实现无公网ip上传下载内网存储的文件资源

文章目录 1. Docker部署Plik2. 本地访问Plik3. Linux安装Cpolar4. 配置Plik公网地址5. 远程访问Plik6. 固定Plik公网地址7. 固定地址访问Plik 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&#xff0c;风趣幽默&…...

Nginx反向代理详解

1. 什么是反向代理 反向代理是一种服务器代理的方式&#xff0c;它代理了客户端的请求并将请求转发给后端服务器&#xff0c;然后将后端服务器的响应返回给客户端。在这个过程中&#xff0c;客户端并不直接与后端服务器通信&#xff0c;而是通过反向代理服务器来实现请求转发和…...

【Android】 ClassLoader 知识点提炼

1.Java中的 ClassLoader 1.1 、ClassLoader的类型 Java 中的类加载器主要有两种类型&#xff0c;即系统类加载器和自定义类加载器。其中系统类 加载器包括3种&#xff0c;分别是 Bootstrap ClassLoader、Extensions ClassLoader 和 Application ClassLoader。 1.1.1.Bootstra…...

16. C++标准库

C标准库兼容C语言标准函数库&#xff0c;可以在C标准库中直接使用C语言标准函数库文件&#xff0c;同时C标准库增加了自己的源代码文件&#xff0c;新增文件使用C编写&#xff0c;多数代码放在std命名空间中&#xff0c;所以连接C标准库文件后还需要 using namespace std;。 【…...

JVM内存结构介绍

1. 什么是JVM 我们都知道在 Windows 系统上一个软件包装包是 exe 后缀的&#xff0c;而这个软件包在苹果的 Mac OSX 系统上是无法安装的。类似地&#xff0c;Mac OSX 系统上软件安装包则是 dmg 后缀&#xff0c;同样无法在 Windows 系统上安装。 Java 代码为什么可以在 Windows…...

Linux常见指令总结

ls&#xff1a;显示当前目录下文件列表 常用的命令行参数&#xff1a; -l 显示更多的文件属性 -a 显示所有的文件/目录&#xff08;包括隐藏的&#xff09; -d 只显示目录 ps&#xff1a;参数可以叠加使用。 例如&#xff1a;ls -la 显示所有文件…...

Day35-Linux网络管理5

Day35-Linux网络管理5 1. 网卡配置2. DNS客户端域名解析配置3. 给网卡配多个IP4. ip地址查看和设置4.1 ifconfig命令4.2 ip命令4.3 ip命令&#xff1a;查看和设置网络配置4.4 ip命令帮助 5. 路由5.1 路由功能分类&#xff1a;5.2 查看路由&#xff1a;5.3 路由表&#xff1a;5.…...

9个神奇免费AI编程助手,实现高效自动代码生成!

在AIGC技术工具快速发展的时代&#xff0c;对高效智能编程工具的需求和关注已达到空前的高度。本文将介绍9款免费且好用的AI编程助手工具。无论你是经验丰富的开发人员还是刚开始编程旅程的新手&#xff0c;这些AI代码软件都能帮助你提高项目开发的生产力、创造力和准确性&…...

Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-3、线条平滑曲面且可通过面观察柱体变化(三)

环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fro…...

【CSP】2022–09-3 防疫大数据 100分 STL大模拟 使用map优化索引 有坑得注意

2022–09-3 防疫大数据 STL大模拟 使用map优化索引 2022–09-3 防疫大数据 STL大模拟 使用map优化索引基本思路遇到的问题&#xff08;学到的东西&#xff09;感悟完整代码 2022–09-3 防疫大数据 STL大模拟 使用map优化索引 这题中规中矩&#xff0c;不算太难也不算太简单&am…...

【Linux基础(三)】信号

学习分享 1、信号的基本概念2、查看信号列表3、常见信号名称4、signal库函数5、发送信号kill6、kill - signal &#xff08;无参信号&#xff09;示例6.1、kill - signal (不可靠信号)示例6.2、kill - signal (可靠信号)示例 7、信号分类7.1、信号运行原理分类7.2、信号是否携带…...

GEE图像可视化常用函数

目录 图层操作Map.addLayer&#xff08;&#xff09;Map.centerObject&#xff08;&#xff09; 直方图ui.Chart.image.histogram&#xff08;&#xff09; 时间序列统计ui.Chart.image.series&#xff08;&#xff09;ui.Chart.image.seriesByRegion&#xff08;&#xff09; …...

c++基础语法

文章目录 前言命名空间命名空间的使用 缺省参数缺省参数的使用 函数重载函数重载的作用函数重载的使用函数重载原理 引用引用的使用引用的使用场景引用和指针 extern Cinlineauto范围fornullptr 前言 大家好我是jiantaoyab&#xff0c;这篇文章给大家带来的是c语言没有的一些特…...

【工作实践-07】uniapp关于单位rpx坑

问题&#xff1a;在浏览器页面退出登录按钮上“退出登录”字样消失&#xff0c;而在手机端页面正常;通过查看浏览器页面的HTML代码&#xff0c;发现有“退出登录”这几个字&#xff0c;只不过由于样式问题&#xff0c;这几个字被挤到看不见了。 样式代码中有一行为&#xff1a…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...

算法—栈系列

一&#xff1a;删除字符串中的所有相邻重复项 class Solution { public:string removeDuplicates(string s) {stack<char> st;for(int i 0; i < s.size(); i){char target s[i];if(!st.empty() && target st.top())st.pop();elsest.push(s[i]);}string ret…...

【Java多线程从青铜到王者】单例设计模式(八)

wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本&#xff0c;sleep也是可以指定时间的&#xff0c;也就是说时间一到就会解除阻塞&#xff0c;继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒)&#xff0c;wait能被notify提前唤醒&#xf…...

Digital IC Design Flow

Flow介绍 1.设计规格 架构师根据市场需求制作算法模型(Algorithm emulation)及芯片架构(Chip architecture),确定芯片设计规格书(Chip design specification) 原型验证 原型验证(Prototype Validation)通常位于产品开发流程的前期阶段,主要是在设计和开发的初步阶…...