当前位置: 首页 > news >正文

Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-3、线条平滑曲面且可通过面观察柱体变化(三)

环境和包:

环境
python:python-3.12.0-amd64
包:
matplotlib 3.8.2
pandas     2.1.4
openpyxl   3.1.2
scipy      1.12.0

代码: 

import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
from matplotlib.colors import ListedColormap
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib.image import imread
from matplotlib.widgets import Button
from tkinter import messagebox#解决中文乱码问题
plt.rcParams['font.sans-serif']=['kaiti']
plt.rcParams["axes.unicode_minus"]=False #解决图像中的"-"负号的乱码问题# 创建自定义颜色调色板
def create_custom_colormap(name, colors):colors = np.array(colors)cmap = plt.get_cmap(name)cmap.set_over(colors[-1])cmap.set_under(colors[0])cmap.set_bad(colors[0])return cmap# 定义一些颜色
#colors = ['red', 'blue', 'green', 'yellow', 'purple']
colors = ['red', 'orange', 'yellow', 'green', 'blue']
# 创建自定义颜色映射对象
my_colormap = create_custom_colormap('turbo', colors)
# 读取Excel文件
df = pd.read_excel('煤仓模拟参数41.xlsx')
#df = pd.read_excel('煤仓模拟参数222.xlsx')
#去除无效点
# 根据A列和B列分组,并将每组中C列的值更改为该组中C列的最小值
df['Z轴'] = df.groupby(['X轴', 'Y轴'])['Z轴'].transform('min')
#print('数量:',df)
# 提取x、y、z数据
x = df['X轴'].values
y = df['Y轴'].values
z = df['Z轴'].values
plt.rcParams['figure.facecolor'] = 'lightblue'
# 创建三维坐标轴对象
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 设置figure标题# 使用平滑曲面插值方法创建地形图(假设使用样条插值方法)
#smoothed_terrain = ax.scatter(x, y, z, cmap='viridis')# 使用griddata函数进行插值,这里使用最近邻插值法,你也可以选择其他的插值方法
# 插值后的数据用于绘制平滑曲面地形图
grid_x, grid_y = np.mgrid[min(x):max(x):100j, min(y):max(y):100j]
grid_z = griddata((x, y), z, (grid_x, grid_y), method='cubic')
# 设置颜色映射和透明度
cmap = plt.get_cmap('RdYlBu')  # 选择颜色映射
norm = plt.Normalize(vmin=-5, vmax=5)  # 标准化高度值
alpha = norm(grid_z).data  # 计算透明度
colors = cmap(norm(grid_z).data)  # 计算颜色值
# 使用平滑曲面插值后的数据绘制地形图
# 绘制地形图(camp:coolwarm,viridis,plasma,inferno,magma,cividis,rainbow)
cmap = ListedColormap(['blue', 'green', 'yellow', 'orange','Red'])
ax.contourf(grid_x, grid_y, grid_z, levels=300, cmap=my_colormap)
#ax.contourf(grid_x, grid_y, grid_z, levels=60, cmap='viridis')
# 绘制x-y,Z=16452的平面
grid_z1 = griddata((x, y), np.ones(x.shape) * 16452, (grid_x, grid_y), method='cubic')
ax.contourf(grid_x, grid_y, grid_z1,colors='blue')
# 生成圆柱数据,底面半径为r,高度为h。
# 查找列'X'的绝对值等于9000的行,并获取列'Z'中的最小值
h_min = df[(abs(df['X轴']) == 9000) & (df['Z轴'].notnull())]['Z轴'].min()
# 先根据极坐标方式生成数据
u1 = np.linspace(0, 2 * np.pi, 50)  # 把圆分按角度为50等分
h1 = np.linspace(16650, h_min-200, 20)  # 把高度9000均分为20份
x1 = np.outer(np.sin(u1), np.ones(len(h1))*9000)  # x值重复20次
y1 = np.outer(np.cos(u1), np.ones(len(h1))*9000)  # y值重复20次
z1 = np.outer(np.ones(len(u1)), h1)  # x,y 对应的高度# Plot the surface
ax.plot_surface(x1, y1, z1, cmap=plt.get_cmap('Blues'))
ax.grid(True)# 添加颜色条
cbar = plt.colorbar(plt.imshow(grid_z, cmap=cmap), ax=ax)
cbar.set_label('Height')
# 读取背景图
img = imread('1.jpeg')
# 添加背景图
ax.imshow(img, alpha=0.5)
# 设置x轴的刻度间隔
ax.set_xticks(np.arange(-9000, 9000, 2500))  # 从-7500到7500,步长为2500# 设置y轴的刻度间隔
ax.set_yticks(np.arange(-9000, 9000, 2500))  # 从-7500到7500,步长为2500# 设置z轴的刻度间隔
#ax.set_zticks(np.arange(16452, 36316, 2500))   # 从10000到31000,步长为2500# 创建包含不规则刻度的数组
z_ticks = np.array([16452,18952,21452,23952,26452,28952,31452,33952,36316])# 设置z轴刻度间隔
ax.set_zlim([16452, 36316]) # 设置z轴的范围
ax.set_zticks(z_ticks) # 设置z轴刻度的值# 设置新的刻度列表
ax.set_zticks(z_ticks)  # 设置新的刻度列表# 设置x轴和y轴的标签为空字符串,并隐藏它们
ax.set_xlabel('')
ax.set_ylabel('')
ax.set_xticks([])
ax.set_yticks([])
# 设置坐标轴的位置和方向
ax.spines['right'].set_color('none')       # 隐藏右侧的坐标轴线
ax.spines['top'].set_color('none')         # 隐藏顶部的坐标轴线
ax.spines['bottom'].set_color('none')       # 隐藏右侧的坐标轴线
ax.spines['left'].set_color('none')         # 隐藏顶部的坐标轴线
#计算面积,容积,最高料位等
h = df['Z轴'].mean()-16452#print(h)# 计算圆柱体的体积
#pi = np.pi
#V = np.pi * r**2 * h  # 圆柱体体积公式:πr²h  r 9000  h-16452  983.6  3000上下就是对的
#print(V)# 计算圆柱体的体积
r=9000
pi = np.pi
V = np.pi * r**2 * h  # 圆柱体体积公式:πr²h  r 9000  h-16452  983.6  3000上下就是对的
#print('V=',V)def mm3_to_m3(mm3):m3 = mm3 / (1000**3)return m3# 测试代码
mm3_value = V  # 1立方米等于1000000立方毫米
m3_value = mm3_to_m3(mm3_value)
print(m3_value)m3_value_1=m3_value+983.6
print('体积=',m3_value_1)zl=1.5*m3_value_1
print('质量=',zl)
VP=m3_value_1/6022.72#6022.72为总桶的总体积
print('容积=',VP)# 找到该列的最大值和最小值
max_value = df['Z轴'].max()
min_value = df['Z轴'].min()
h=h+16342
# 打印结果
print("最高料位=",max_value)
print("最低料位=",min_value)
print("平均料位=",h)
# 添加标题和坐标轴标签
ax.set_title('高度变化显示顶仓、筒和底仓的料的变化')
# 在图形上添加文本
str = "体积="+np.array2string(m3_value_1)+"\n质量="+np.array2string(zl)+"\n容积="+"{:.2%}".format(VP)+"\n最高料位="+np.array2string(max_value)+"\n最低料位="+np.array2string(min_value)+"\n平均料位="+np.array2string(h)
ax.text(-28000,-5000,10000,str)
# 在指定位置添加文本
ax.text2D(-0.3, 0.5, str, transform=ax.transAxes, fontsize=12, color='b')
# 改变图形显示的角度
ax.view_init(elev=30, azim=-73)# 设置图形比例,使X、Y轴和面板底部重合
ax.set_aspect('equal', adjustable='box')
# 设置图形比例,使X、Z轴重合
ax.set_axis_off()  # 关闭坐标轴plt.show()

效果图: 

资源下载(分享-->资源分享):

链接:https://pan.baidu.com/s/1UlP0lsma8OWchfV5kstEFQ 
提取码:kdgr

相关文章:

Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-3、线条平滑曲面且可通过面观察柱体变化(三)

环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fro…...

【CSP】2022–09-3 防疫大数据 100分 STL大模拟 使用map优化索引 有坑得注意

2022–09-3 防疫大数据 STL大模拟 使用map优化索引 2022–09-3 防疫大数据 STL大模拟 使用map优化索引基本思路遇到的问题(学到的东西)感悟完整代码 2022–09-3 防疫大数据 STL大模拟 使用map优化索引 这题中规中矩,不算太难也不算太简单&am…...

【Linux基础(三)】信号

学习分享 1、信号的基本概念2、查看信号列表3、常见信号名称4、signal库函数5、发送信号kill6、kill - signal (无参信号)示例6.1、kill - signal (不可靠信号)示例6.2、kill - signal (可靠信号)示例 7、信号分类7.1、信号运行原理分类7.2、信号是否携带…...

GEE图像可视化常用函数

目录 图层操作Map.addLayer()Map.centerObject() 直方图ui.Chart.image.histogram() 时间序列统计ui.Chart.image.series()ui.Chart.image.seriesByRegion() …...

c++基础语法

文章目录 前言命名空间命名空间的使用 缺省参数缺省参数的使用 函数重载函数重载的作用函数重载的使用函数重载原理 引用引用的使用引用的使用场景引用和指针 extern Cinlineauto范围fornullptr 前言 大家好我是jiantaoyab,这篇文章给大家带来的是c语言没有的一些特…...

【工作实践-07】uniapp关于单位rpx坑

问题:在浏览器页面退出登录按钮上“退出登录”字样消失,而在手机端页面正常;通过查看浏览器页面的HTML代码,发现有“退出登录”这几个字,只不过由于样式问题,这几个字被挤到看不见了。 样式代码中有一行为&#xff1a…...

服务层组件

目录 连接层(Connection Pool) SQL接口(SQL Interface) 查询缓存(Caches&Buffers) Management Services&Utilities 查询分析器(Parser) 优化器(Optimizer)...

【学习笔记】VMware vSphere 6.7虚拟化入门

VMware vSphere 6.7虚拟化入门课程介绍 课程内容 1、VMware vSphere 6.7虚拟化入门课程介绍 2、ESXi6.7控制台设置 3、使用vSpkere Host client管理虚拟机 4、VMware EsXi基础操作 5、VMware Esxi存储管理 6、管理ESXi主机网络与虚拟机网络 7、安装配置vCenter Server Applia…...

如何防范企业内部安全威胁?

1 用户行为分析(UEBA) 现代化的用户行为分析产品具有多种优势功能,使企业能够有效地检测内部威胁。用户行为分析软件通过收集和分析来自各种来源的数据来分析和检测内部人员的可疑行为。这些来源包括网络日志和用户活动日志。通过检查这些数…...

内网渗透-跨域环境渗透-1

目录 smbclient工具 mimikatz工具 Kerbers协议 NTLM认证 hash传递攻击(PTH攻击) 黄金票据攻击 白银票据 MS14-068 smbclient工具 在linux里面连接远程windows共享目录,可以使用这个工具 ​ 第一种连接方式:smbclient -L 目…...

安信可IDE(AiThinker_IDE)编译ESP8266工程方法

0 工具准备 AiThinker_IDE.exe ESP8266工程源码 1 安信可IDE(AiThinker_IDE)编译ESP8266工程方法 1.1 解压ESP8266工程文件夹 我们这里使用的是NON-OS_SDK,将NON-OS_SDK中的1_UART文件夹解压到工作目录即可 我这里解压到了桌面&#xff0c…...

【java数据结构】HashMap和HashSet

目录 一.认识哈希表: 1.1什么是哈希表? 1.2哈希表的表示: 1.3常见哈希函数: 二.认识HashMap和HashSet: 2.1关于Map.Entry的说明:,> 2.2Map常用方法说明: 2.3HashMap的使用案例: 2.4Set常见方法…...

基于Springboot的高校汉服租赁网站(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的高校汉服租赁网站(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构…...

分布式解决方案

目录 1. 分布式ID1-1. 传统方案1-2. 分布式ID特点1-3. 实现方案1-4. 开源组件 2. 分布式Session2-1. 传统Session2-2. Spring-Session2-3. Token Redis2-4. JWT2-5. 拦截器统一处理Token2-6. Oauth2 3. 分布式锁3-1. redis3-2. Zookeeper 1. 分布式ID 1-1. 传统方案 时间戳U…...

力扣刷题日记——L724. 寻找数组的中心下标

1. 前言 今天是力扣刷题日记的第二天,今天依旧是一道简单题啊,慢慢来,先看看题目是什么吧。 2. 题目描述 给你一个整数数组 nums ,请计算数组的 中心下标。 数组 中心下标 是数组的一个下标,其左侧所有元素相加的和…...

【Kotlin】类和对象

1 前言 Kotlin 是面向对象编程语言,与 Java 语言类似,都有类、对象、属性、构造函数、成员函数,都有封装、继承、多态三大特性,不同点如下。 Java 有静态(static)代码块,Kotlin 没有&#xff1…...

Docker完整版(一)

Docker完整版(一) 一、Docker概述1.1、Docker简介1.2、Docker的用途1.3、容器与虚拟机的区别1.4、Docker系统架构1.5、Docker仓库 二、Docker引擎2.1、Docker引擎架构2.2、Docker引擎分类2.3、Docker引擎的安装2.4、Docker镜像加速器 三、Docker镜像3.1、…...

AIOPS:Zabbix结合讯飞星火做自动化告警+邮件通知并基于人工智能提供解决方案

目前Zabbix官方已经提供Zabbix+ChatGPT的解决方案 ChatGPT一周年,你充分利用了吗?Zabbix+ChatGPT,轻松化解告警! 但是由于需要魔法等其他因素,比较不稳定,遂决定使用国内模型,这里我挑选的是讯飞星火,基于我之前的文档,在此基础上通过Zabbix的告警脚本实现调用AI模型…...

AHU 汇编 实验六

一、实验名称:实验6 输入一个16进制数,把它转换为10进制数输出 实验目的: 培养汇编中设计子程序的能力 实验过程: 源代码: data segmentbuff1 db Please input a number(H):$buff2 db 30,?,30 dup(?),13,10buff3 …...

Linux的输出、输入重定向和管道

目录 输出重定向 输入重定向 < << 管道操作 输出重定向 当我输⼊⼀个命令之后&#xff0c;回⻋&#xff0c;命令产⽣了结果&#xff0c;结果默认是输出到屏幕上的。 默认情况&#xff0c;⽆论⼀个命令执⾏正确与否&#xff0c;结果都会默认输出到屏幕上。 在有…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...