当前位置: 首页 > news >正文

【数据结构学习笔记】选择排序

【数据结构学习笔记】选择排序

参考电子书:排序算法精讲

算法原理

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕

const nums = [1, 4, 6, 2, 0];let minIndex;
for (let i = 0; i < nums.length; i++) {minIndex = i;for (let j = i + 1; j < nums.length; j++) {if (nums[j] < nums[minIndex]) {minIndex = j;}}const temp = nums[i];nums[i] = nums[minIndex];nums[minIndex] = temp;
}
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

优化方式

  • 当 i = nums.length - 1 时,j = nums.length 直接跳出循环,因此可以跳过
const nums = [1, 4, 6, 2, 0];let minIndex;
for (let i = 0; i < nums.length - 1; i++) {minIndex = i;for (let j = i + 1; j < nums.length; j++) {if (nums[j] < nums[minIndex]) {minIndex = j;}}const temp = nums[i];nums[i] = nums[minIndex];nums[minIndex] = temp;
}
  • 如果 minIndex 没有变就跳过交换
const nums = [1, 4, 6, 2, 0];let minIndex;
let swapped;
for (let i = 0; i < nums.length; i++) {minIndex = i;swapped = false;for (let j = i + 1; j < nums.length - i; j++) {if (nums[j] < nums[minIndex]) {minIndex = j;swapped = true;}}if (!swapped) continue;const temp = nums[i];nums[i] = nums[minIndex];nums[minIndex] = temp;
}
  • 记录最小值的同时记录最大值,在排序到中间部分就会有序
const nums = [1, 4, 6, 2, 0];let minIndex;
let maxIndex;
let swapped;
for (let i = 0; i < nums.length; i++) {minIndex = i;maxIndex = i;swapped = false;for (let j = i + 1; j < nums.length - i; j++) {if (nums[j] < nums[minIndex]) {minIndex = j;swapped = true;}if (nums[j] > nums[maxIndex]) {maxIndex = j;swapped = true;}}if (!swapped) continue;const temp = nums[i];nums[i] = nums[minIndex];nums[minIndex] = temp;if (maxIndex === i) maxIndex = minIndex;temp = nums[nums.length - 1 - i];nums[nums.length - 1 - i] = nums[maxIndex];nums[maxIndex] = temp;
}

相关例题

LC 215.数组中的第 k 个最大元素

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

/*** @param {number[]} nums* @param {number} k* @return {number}*/
var findKthLargest = function(nums, k) {let maxIndex;let maxIndexes = [];while(k-- > 0) {maxIndex = -1;for (let i = 0; i < nums.length; i++) {if (maxIndexes.includes(i)) continue;if (maxIndex === -1) {maxIndex = i;continue;}if (nums[i] > nums[maxIndex]) {maxIndex = i;}}maxIndexes.push(maxIndex);}return nums[maxIndexes[maxIndexes.length - 1]];
};

受限于 Leetcode 更新了测试用例,此题用选择排序会出现超时,但是算法思想不变即可

相关文章:

【数据结构学习笔记】选择排序

【数据结构学习笔记】选择排序 参考电子书&#xff1a;排序算法精讲 算法原理 首先在未排序序列中找到最小&#xff08;大&#xff09;元素&#xff0c;存放到排序序列的起始位置&#xff0c;然后&#xff0c;再从剩余未排序元素中继续寻找最小&#xff08;大&#xff09;元…...

小资金适合做伦敦金的投资吗?

在回答这个问题之前&#xff0c;我们首先需要了解伦敦金是什么。伦敦金&#xff0c;也称为伦敦金市场交易的黄金&#xff0c;是一种国际性的金融交易产品&#xff0c;其价格受全球政治、经济、货币政策、供求关系等多种因素影响&#xff0c;波动性较大。因此&#xff0c;投资伦…...

自动化运维工具 ---------------Ansible

一、Ansible 发展史及功能 作者&#xff1a;Michael DeHaan&#xff08; Cobbler pxe kikstar 与 Func 作者&#xff09;ansible 的名称来自科幻小说《安德的游戏》中跨越时空的即时通信工具&#xff0c;使用它可以在相距数光年的距离&#xff0c;远程实时控制前线的舰队战斗2…...

富格林:有效做单安全盈利方法

富格林悉知&#xff0c;在伦敦金的投资中&#xff0c;是否安全盈利很大一部分因素取决于是否有效做单&#xff0c;投资者在进入市场之后&#xff0c;需要学习了解伦敦金相关规则&#xff0c;学习一定的做单的技巧&#xff0c;这样有利于我们后续做单顺畅盈利。以下总结几点安全…...

二分查找的理解及应用场景。

一、是什么 在计算机科学中&#xff0c;二分查找算法&#xff0c;也称折半搜索算法&#xff0c;是一种在有序数组中查找某一特定元素的搜索算法 想要应用二分查找法&#xff0c;则这一堆数应有如下特性&#xff1a; 存储在数组中有序排序 搜索过程从数组的中间元素开始&…...

共创时代,品牌如何做好UGC营销?

在当下的互联网时代&#xff0c;众多品牌已经逐渐意识到“产品为重”的影响方式已经很难提升转化率&#xff0c;内容才是吸引用户的必胜法宝&#xff0c;然而当代人被海量信息裹挟&#xff0c;人们的注意力成为稀缺资源&#xff0c;在这个环境下&#xff0c;UGC成为品牌的营销方…...

华为三层交换机:ACL的基本实验

实验要求&#xff1a; PC1不允许访问PC3&#xff0c;PC3可以访问PC1 分析问题&#xff1a; PC1不允许访问PC3&#xff0c;问题中含有“目标地址”则我们需要设置目标地址&#xff0c;这样基本ACL是不行的&#xff0c;必须使用高级ACL [sw1]acl ? INTEGER<2000-2999>…...

基于springboot+vue的旅游管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

4. git 添加版本标签

要给某一分支的某一提交版本添加标签&#xff08;tag&#xff09;&#xff0c;你首先需要确定该提交版本在分支上的具体哈希值&#xff08;commit hash&#xff09;。 一旦你有了这个哈希值&#xff0c;你就可以像之前描述的那样使用 git tag 命令来创建标签。 以下是如何操作的…...

2024 PhpStorm激活,分享几个PhpStorm激活的方案

文章目录 PhpStorm 公司简介我这边使用PhpStorm的理由PhpStorm 2023.3 最新变化AI Assistant 预览阶段结束 正式版基于 LLM 的代码补全测试代码生成编辑器内代码生成控制台中基于 AI 的错误解释 Pest 更新PHP 8.3 支持#[\Override] 特性新的 json_validate() 函数类型化类常量弃…...

2419. prufer序列(prufer编码,模板题)

活动 - AcWing 本题需要你实现prufer序列与无根树之间的相互转化。 假设本题涉及的无根树共有 n 个节点&#xff0c;编号 1∼n。 为了更加简单明了的描述无根树的结构&#xff0c;我们不妨在输入和输出时将该无根树描述为一个以 n 号节点为根的有根树。 这样就可以设这棵无…...

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Text)

显示一段文本的组件。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含Span和ImageSpan子组件。 接口 Text(content?: string | Resource, value?: TextOptions) 从API versi…...

开源大数据集群部署(十五)Zookeeper集群部署

作者&#xff1a;櫰木 1、集群规划 主机版本角色系统用户hd1.dtstack.com3.7.1followerzookeeperhd2.dtstack.com3.7.1leaderzookeeperhd3.dtstack.com3.7.1followerzookeeper 2、zookeeper kerberos主体创建 在生产中zk服务端和客户端票据可以设置成不通名称或相同名称&am…...

服务器镜像是什么

镜像即镜像服务器。镜像服务器与主服务器的服务内容都是一样的&#xff0c;只是放在一个不同的地方&#xff0c;分担主服务器的负载量。 可以使用&#xff0c;但不是原版的。在网上内容完全相同而且同步更新的两个或多个服务器&#xff0c;除主服务器外&#xff0c;其余的都被称…...

JWT原理

JWT 介绍 JWT&#xff08;JSON Web Token&#xff09;是一个开放标准&#xff08;RFC 7519&#xff09;&#xff0c;它定义了一种简洁的、自包含的方法用于通信双方之间以 JSON 对象的形式安全地传输信息。这种信息可以被验证和信任&#xff0c;因为它是数字签名的。JWT通常用于…...

操作系统:一款纯正的“管理”软件

目录 前言&#xff1a; 1.操作系统的概念 2.操作系统的结构示意图&#xff1a; 3.什么是接口&#xff1f; 4.什么是驱动程序&#xff1f; 4.什么是系统调用&#xff08;system call&#xff09;&#xff1f; 5.操作系统和操作系统内核的区别 6.设计OS的核心目的 前言&…...

Mac笔记本聚焦SpotLight占用内存太高的 解法

分享一个自创的绝对有效的解决苹果电脑Mac笔记本SpotLight聚焦占用内存过高的方法! 一、背景 / 问题原因 1、Mac的聚焦功能,可以快速打开应用程序,非常方便! But,随着电脑的使用文件等越来越多,就会导致SpotLight聚焦需要更多更多甚至巨多的内存来建立索引,就会导致电脑…...

C++中.h和.hpp文件有什么区别?

在C中&#xff0c;.h和.hpp文件都是用于包含函数声明、类定义、宏定义等内容的头文件&#xff0c;它们的主要区别在于约定和习惯。 历史与来源&#xff1a;.h后缀是C语言头文件的标准后缀&#xff0c;随着C的演变&#xff0c;一些开发者开始使用.hpp后缀来表示C头文件&#xff…...

MongoDB聚合运算符:$derivative

$derivative聚合运算符返回返回指定窗口内的平均变化率&#xff08;即求导&#xff09;&#xff0c;变化率使用以下公式计算&#xff1a; $setWindowFields阶段窗口中的第一个和最后一个文件。分子&#xff0c;等于最后一个文档的表达式的值减去第一个文档表达式的值。分母&am…...

面试官:如果你现在有20个Spring Boot微服务,如何监视所有这些Spring Boot微服务?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:如果你现在有20个Spring Boot微服务,如何监视这些微服务? 要监视所有 Spring Boot 微服务,可以使用 Spring Boot Admin 这样的监控工具。Sprin…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...