baidu, google和chatgpt -- 翻译对比
原文
That ChatGPT can automatically generate something that reads even superficially like human-written text is remarkable, and unexpected. But how does it do it? And why does it work? My purpose here is to give a rough outline of what’s going on inside ChatGPT—and then to explore why it is that it can do so well in producing what we might consider to be meaningful text. I should say at the outset that I’m going to focus on the big picture of what’s going on—and while I’ll mention some engineering details, I won’t get deeply into them. (And the essence of what I’ll say applies just as well to other current “large language models” [LLMs] as to ChatGPT.)
The first thing to explain is that what ChatGPT is always fundamentally trying to do is to produce a “reasonable continuation” of whatever text it’s got so far, where by “reasonable” we mean “what one might expect someone to write after seeing what people have written on billions of webpages, etc.”
So let’s say we’ve got the text “The best thing about AI is its ability to ”. Imagine scanning billions of pages of human-written text (say on the web and in digitized books) and finding all instances of this text—then seeing what word comes next what fraction of the time. ChatGPT effectively does something like this, except that (as I’ll explain) it doesn’t look at literal text; it looks for things that in a certain sense “match in meaning”. But the end result is that it produces a ranked list of words that might follow, together with “probabilities”:
google 翻译
ChatGPT 可以自动生成一些读起来就像人类书写的文本一样的东西,这是了不起的,也是出乎意料的。但它是如何做到的呢?为什么它有效?我在这里的目的是粗略地概述 ChatGPT 内部正在发生的事情,然后探索为什么它可以很好地生成我们认为有意义的文本。我应该在一开始就说,我将重点关注正在发生的事情的大局,虽然我会提到一些工程细节,但我不会深入探讨它们。(我所说的本质同样适用于其他当前的“大型语言模型”[LLM] 和 ChatGPT。)
首先要解释的是,ChatGPT 从根本上一直在尝试做的是对迄今为止所获得的任何文本进行“合理的延续”,其中“合理”的意思是“人们在看到人们写的内容后可能期望某人写什么”已经写在数十亿个网页上,等等。”
假设我们已经得到了文本“人工智能最好的事情是它的能力 ”。想象一下,扫描数十亿页的人类书写文本(例如在网络上和数字化书籍中)并找到该文本的所有实例,然后查看接下来出现的单词是什么时间。ChatGPT 有效地做了类似的事情,除了(正如我将解释的)它不查看文字文本;它寻找某种意义上“意义匹配”的事物。但最终的结果是,它生成了一个可能跟随的单词的排名列表,以及“概率”:
chatgpt 翻译
ChatGPT是一种基于人工智能的大型语言模型,具有生成类似于人类书写文本的能力,这一点确实令人惊讶而意想不到。但它是如何做到的呢?为什么会有效果?我在这里的目的是大致概述ChatGPT内部的运作方式,然后探讨为什么它能够在生成我们认为
有意义的文本方面表现得如此出色。我首先要解释的是,ChatGPT始终基本上是在尝试生成一种“合理的延续”,以当前文本为基础,所谓“合理”是指“人们在阅读了数十亿个网页等内容后可能期待看到的文本”。假设我们有文本:“人工智能最好的地方是其能力”。想象一下扫描数十亿页的人类书写文本(比如网络上和数字化书籍中的文本),找到所有这样的文本实例,然后看下接下来的词是什么,它在多少情况下出现。ChatGPT实际上做了类似的事情,不过它不看字
面上的文本;它寻找的是在某种意义上“匹配的内容”。但最终结果是,它生成了一个排名列表,显示可能跟随的单词,以及对应的“概率”:
baidu ai
ChatGPT可以自动生成看起来像人类撰写的文本的东西,这非常了不起,也出乎意料。但它是如何做到的?为什么能工作?我的目的是概述ChatGPT内部发生的事情,然后探讨为什么它在产生我们可能认为是有意义的文本方面做得这么好。首先,我应该说,我将重点放在大局上,虽然我会提到一些工程细节,但我不会深入讨论它们。(我所说的本质也适用于其他当前的“大型语言模型” [LLMs]和ChatGPT。)
首先要解释的是,ChatGPT 始终在尝试做的是对它迄今为止得到的任何文本进行“合理的延续”,这里的“合理”是指“在看到人们在数十亿个网页上写的东西后,人们可能会期望别人写些什么”。
假设我们得到了文本“人工智能最好的地方在于它能够……”。想象一下,扫描数十亿页人类编写的文本(比如在网络和数字化书籍中),并找到该文本的所有实例,然后查看接下来出现哪个词,占多少时间。ChatGPT有效地做到了这一点,除了(正如我将解释的那样)它不查看文字文本;它寻找在某种意义上“意义匹配”的东西。但最终的结果是,它产生了一个可能出现的单词的排名列表,以及“概率”:
baidu 翻译
ChatGPT可以自动生成一些读起来甚至表面上像人类书写的文本的东西,这是了不起的,也是出人意料的。但它是如何做到的呢?为什么它有效?我在这里的目的是给出ChatGPT内部发生的事情的大致轮廓,然后探索为什么它可以在生成我们可能认为有意义的文本方面做得如此好。我应该在一开始就说,我将专注于正在发生的事情的大局,虽然我将提到一些工程细节,但我不会深入探讨它们。(我将要说的本质同样适用于其他当前的“大型语言模型”[LLM],就像适用于ChatGPT一样。)
首先要解释的是,ChatGPT始终试图从根本上做的是为迄今为止获得的任何文本生成“合理的延续”,其中“合理”是指“在看到人们在数十亿个网页上所写的内容后,人们可能会期望某人写什么”所以,让我们假设我们得到了文本“关于人工智能的最好的东西是它的能力”。想象一下,扫描数十亿页人类书写的文本(比如在网络和数字化书籍中),找到这些文本的所有实例,然后看看接下来是什么单词——时间的一小部分。ChatGPT有效地做了类似的事情,除了(正如我将解释的)它不看文本;它寻找在某种意义上“意义匹配”的东西。但最终结果是,它产生了一个可能紧随其后的单词的排名列表,以及“概率”:
相关文章:
baidu, google和chatgpt -- 翻译对比
原文 That ChatGPT can automatically generate something that reads even superficially like human-written text is remarkable, and unexpected. But how does it do it? And why does it work? My purpose here is to give a rough outline of what’s going on inside…...
高分辨率全球海洋温度和盐度再分析数据Global Ocean Physics Reanalysis(0.083°),并利用matlab读取绘图
1.引言 在研究全球海平面变化的问题中,卫星测高获得总的海平面变化,而海平面变化包含质量变化和比容变化。因此测高数据和海洋物理分析数据对于海平面研究至关重要。 测高数据下载网址: Global Ocean Gridded L 4 Sea Surface Heights And …...
微信小程序修改placeholder样式
微信小程序有既定的修改placeholder的标签 一、placeholder-style直接修改样式 <input type"text" placeholder"请输入" placeholder-style"color:#e2e2e2;"></input>二、placeholder-class设置样式类 <input type"text&…...
爬虫案例1
通过get请求直接获取电影信息 目标页面: https://spa6.scrape.center/在network中可以看到是通过Ajax发送的请求,这个请求在postman中也可以直接请求成功,这只是一个用来练习爬虫的,没有达到js逆向的过程,需要通过分析js 代码来获…...
修改表结构
目录 修改表结构 创建数据表插入数据 修改已有列 修改 member 表的 name 列的定义 为表增加列 增加一个 address 列,这个列上不设置默认值 增加一个 sex 列,这个列上设置默认值 删除表中的列 删除 sex 列 Oracle从入门到总裁:https…...
Rust 语言中的 into() 方法
在 Rust 中,into() 方法通常用于将一个类型的值转换为另一个类型,这通常涉及到资源的所有权转移。into() 方法通常定义在实现了 Into<T> trait 的类型上,该 trait 允许一个类型被“转换”为另一个类型。 into() 方法的一个常见用途是在…...
MinIO权限提升漏洞CVE-2024-24747详细解决办法
漏洞名称: MinIO权限提升漏洞(CVE-2024-24747) 漏洞简介 2024年2月2日,深瞳漏洞实验室监测到一则MinIO 存在权限提升漏洞的信息,漏洞编号:CVE-2024-24747,漏洞威胁等级:高危。 该漏洞是由于用户创建的访…...
“我快无聊死了”用英语怎么说?柯桥英语口语学习,成人零基础学外语
每日一句 Im bored to death. 我快无聊死了。 单词解析: bored / bɔːd / adj.无聊的,厌倦的 bored to d15857575376eath:指非常无聊或厌烦,达到了极点的程度。 "bored" 和 "boring" 都与无聊相关&#…...
JS ATM练习案例(复习循环知识)
需求:用户可以选择存钱、取钱、查看余额和退出功能。 分析:1循环时反复出现提示框,所以提示框写到循环里面。 2.退出的条件是4,所以是4就会结束循环 3.提前准备一个金额预存储 4取钱为减法操作,存钱为加法操作…...
Android 二维码相关(一)
Android 二维码相关(一) 本篇文章主要记录下android下使用zxing来创建二维码. 1: 导入依赖 api "com.google.zxing:core:3.5.1"2: 创建二维码 创建QRCodeWriter对象 QRCodeWriter qrCodeWriter new QRCodeWriter(); 将文本内容转换成BitMatrix BitMatrix encode …...
利用tree命令自动保存文件层级结构
tree命令的使用 为了将上图左侧的文件目录,生成上图右侧中的文件夹结构列表,保存在txt中,使用了如下cmd命令: C:\armadillo-12.8.0>tree .>list.txt以上tree命令分为3部分: tree 命令. 在当前目录>list.tx…...
C++初阶:内存管理
目录 1. C/C中各种资源的内存分布1.1 C/C程序内存区域划分1.2 各资源的内存分布情况(练习) 2. C中的动态内存管理方式2.1 new/delete开辟内置类型空间2.2 new/delete开辟销毁自定义类型空间 3. operator new 与 operator delete函数4. new与delete的实现…...
vue和react的diff算法源码
Vue.js 中的虚拟 DOM Diff 算法是其性能优化的关键之一。 Vue.js 的 Diff 算法主要基于 Snabbdom,以下是 Vue.js 中虚拟 DOM Diff 算法的简化版伪代码,以便说明其基本思想: function patch(oldVnode, vnode) {// 如果 oldVnode 不存在&…...
Coordinate Attention(CVPR 2021)
paper:Coordinate Attention for Efficient Mobile Network Design official implementation:GitHub - houqb/CoordAttention: Code for our CVPR2021 paper coordinate attention 背景 注意力机制,已经被广泛用于提高深度神经网络的性能&…...
计算机网络-第4章 网络层(2)
主要内容:网络层提供的两种服务:虚电路和数据报(前者不用)、ip协议、网际控制报文协议ICMP、路由选择协议(内部网关和外部网关)、IPv6,IP多播,虚拟专用网、网络地址转换NAT,多协议标…...
重学SpringBoot3-WebMvcAutoConfiguration类
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-WebMvcAutoConfiguration类 是什么什么用生效条件作用 自定义配置的三种方式自定义配置举例1. 自定义 DispatcherServlet 配置2. 静态资源配置3. 自定义…...
探索数据结构:深入了解顺序表的奥秘
✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:数据结构与算法 贝蒂的主页:Betty’s blog 1. 什么是顺序表 顺序表是用一段物理地址连续的存储单元依次存储数据元…...
苍穹外卖学习-----2024/03/010---redis,店铺营业状态设置
1.Redis入门 2.在Java中操作Redis 3.店铺营业状态设置 BUG!!! 今天在启动项目时,用到了Redis缓存数据库,但是却出现了报错信息: ERR Client sent AUTH, but no password is set。Caused by: io.lettuce.core.RedisCommandExecutionException…...
RUST 每日一省:发布到crates.io
github是开源代码分享的地方,rust的开源项目除了github,我们还可以将其发布到 crates.io 上,然后其它用户就可以使用cargo进行安装使用了。其实步骤很简单,只有三条命令了,我们一次来看一下。 1、cargo package 首先&a…...
String类及其常用方法
文章目录 1.String类的特性与使用1.1 String类的特性1.2 String对象的创建方式1.3 String 的使用(不同的拼接操作) 2.String常用方法2.1 String的常用方法一2.2 String常用方法二2.3 String常用方法三 1.String类的特性与使用 1.1 String类的特性 Stri…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
