*地宫取宝c++
题目
输入样例1:
2 2 2
1 2
2 1
输出样例1:
2
输入样例2:
2 3 2
1 2 3
2 1 5
输出样例2:
14
思路
题目说从入口开始,只能向右或向下行走到达右下角,类似“摘花生”这道题的模型。题目又说只有当格子里的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它,也就说拿到的宝贝价值严格单调递增,是“单调递增子序列”的模型。
状态表示:
那用几维才能表示一个状态呢?首先,需要用 i, j 来表示从起点走到 (i, j) 这个格子的所有路径方案数;然后,需要用ki来表示从起点走到(i, j)这个格子拿了多少个物品;最后,由于拿到的宝贝价值要严格单调递增,因此需要用C表示拿到的最后一个物品的价值。
那为什么我们不用最后一个物品的坐标来表示状态呢,通过坐标也可以得到最后一个物品的价值啊?因为有50 x 50个坐标,并且是这样做会使一个状态表示的维数达到五维,时间复杂度也会增加。题目中取到宝贝的价值有限(0≤Ci≤12),因此可以用C代表最后取到的宝贝的最大值即可,这样可以将维数降到四维。
综上所述,我们可以将集合f[i][j][ki][c]定义为所有从起点走到(i,j),且已经取了ki件物品,且最后一件物品的价值是C的合法方案的集合。集合属性为满足集合定义的方案数总和。
状态计算:
由于到达(i, j)这个点只能从左边或上边来,因此可以将集合划分为所有最后一步是从上往下走的走法的集合和所有最后一步是从左往右走的走法的集合。而对于所有最后一步是从上往下走的走法的集合,又可以划分为取不取(i, j)这个格子的宝贝这两个小的集合,当要取(i, j)这个格子的宝贝时,说明这个格子里宝贝价值value比前面拿到的任何宝贝的价值都大,并且,根据集合定义,f[i][j][ki][c]存的是最后一件物品的价值是c的合法方案的集合,因此,当枚举c时,若要取(i, j)这个格子的宝贝还需要满足value等于c。
边界处理
需要注意的是,由于宝贝的价值可能为0,当左上角格子的的宝贝价值为0时,不拿可以表示为f[1][1][0][0] = 1,但下一步(向右或向下走)遇到一个格子的宝贝价值为0,就不能拿了,因为题目要求拿到的宝贝价值要严格单调递增;而实际上,若没有拿左上角格子价值为0的宝贝,在下一步遇到一个价值为0的宝贝是可以选择拿或不拿的。
对此,我们可以将所有格子里宝贝的价值都加上1,宝贝价值区间变成1≤Ci≤13;当c为0时表示还没有拿过任何一件宝贝,“最后一个物品价值为0”。这样处理后,当左上角格子的的宝贝价值为1时,不拿可以表示为f[1][1][0][0] = 1,当下一步(向右或向下走)遇到一个格子的宝贝价值为1,就可以选择拿或不拿了。
int 范围为2.1 x 10^9,因此val最多加两个数就要取模了。
代码
#include<bits/stdc++.h>
using namespace std;
const int MOD = 1000000007, N = 55;
int a[N][N], f[N][N][13][14];
int n, m, k, res;int main()
{cin >> n >> m >> k;for (int i = 1; i <= n; i ++){for (int j = 1; j <= m; j ++){cin >> a[i][j];a[i][j] ++;}}int res = 0;f[1][1][1][a[1][1]] = 1, f[1][1][0][0] = 1;for (int i = 1; i <= n; i ++){for (int j = 1; j <= m; j ++){if (i == 1 && j == 1) continue;for (int ki = 0; ki <= k; ki ++){for (int value = 0; value <= 13; value ++){int &val = f[i][j][ki][value];//不能选(i, j)这个格子里的宝贝//从上往下走,并且不取(i, j)上的宝贝的方案数val = (val + f[i - 1][j][ki][value]) % MOD;//从左往右走,并且不取(i, j)上的宝贝的方案数val = (val + f[i][j - 1][ki][value]) % MOD;if (ki > 0 && value == a[i][j]){for (int c = 0; c < value; c ++){//从前面的状态中选价值c < value并且选了ki - 1件的fval = (val + f[i - 1][j][ki - 1][c]) % MOD;val = (val + f[i][j - 1][ki - 1][c]) % MOD;}}}}}}for (int i = 1; i <= 13; i ++) res = (res + f[n][m][k][i]) % MOD;cout << res;return 0;
}
感觉DP就是根据集合定义打好表,算出全部的状态的值,然后查询表中符合题目要求的状态值。
相关文章:

*地宫取宝c++
题目 输入样例1: 2 2 2 1 2 2 1输出样例1: 2输入样例2: 2 3 2 1 2 3 2 1 5输出样例2: 14 思路 题目说从入口开始,只能向右或向下行走到达右下角,类似“摘花生”这道题的模型。题目又说只有当格子里的宝…...
同态滤波算法详解
同态滤波是一种用于增强图像的方法,特别适用于去除图像中的照明不均和阴影。该算法基于照射反射模型,将图像分解为两个分量:照射分量(illumination component)和反射分量(reflection component)…...

财务管理系统报账和挂账分别什么区别!报销又是什么【第三期】
前言 已经写了两期 财务管理系统之saas多租户架构是什么以及分库分表以及如何选择分布式事务方案 【程序员聊业务】财务管理系统之模块分类 报账和挂账概念 报账是指企业或个人因业务需要而发生的各项费用支出,在支付后,需要将相关的票据、凭证等提交…...

最少刷题数
最少刷题数 题目分析 对于每一名同学计算还需要再刷多少题才能保证刷题数比他多的人数不超过刷题数比他少的学生人数。我们可以考虑统计每一个分数的前缀和数组,sum[i]表示当前学生中,刷题数小于等于i的人数。那么对于学生i的刷题数a[i],su…...

Python刘诗诗
写在前面 刘诗诗在电视剧《一念关山》中饰演了女主角任如意,这是一个极具魅力的女性角色,她既是一位有着高超武艺和智慧的女侠士,也曾经是安国朱衣卫前左使,身怀绝技且性格坚韧不屈。剧中,任如意因不满于朱衣卫的暴行…...

探索ChatGPT在软件架构师工作中的应用
随着人工智能技术的不断发展,自然语言处理模型如OpenAI的ChatGPT已经成为了解决各种实际问题的强大工具之一。在软件架构师这个领域,ChatGPT也有着广泛的应用。本文将探讨软件架构师如何有效地利用ChatGPT来解决问题和提高工作效率。 ChatGPT简介 Chat…...

pytest--allure报告中添加用例详情
前言 前面介绍了如何生成allure的报告,看着allure的页面非常好看,但是感觉少了一些内容,allure还可以增加一些用例详情内容,这样让我们的报告看着更加绚丽。 allure增加用例详情 我们可以在报告测试套件中增加用例详情内容。 …...

【深度学习笔记】9_5 多尺度目标检测
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 9.5 多尺度目标检测 在9.4节(锚框)中,我们在实验中以输入图像的每个像素为中心生成多个锚框。这些…...

Linux--vim
一.什么是vim Vim(Vi IMproved)是一种文本编辑器,通常在Linux和其他类Unix操作系统中使用。它是Vi编辑器的增强版本,提供了更多的功能和定制选项。Vim具有强大的文本编辑和编程功能,支持语法高亮、代码折叠、宏录制、…...

FreeRTOS操作系统学习——中断管理
中断管理介绍 嵌入式实时系统需要对整个系统环境产生的事件作出反应。这些事件对处理时间和响应时间都有不同的要求。事件通常采用中断方式检测,中断服务例程(ISR)中的处理量应当越短越好。ISR是在内核中被调用的, ISR执行过程中,用户的任务…...

DHCP中继实验(思科)
华为设备参考:DHCP中继实验(华为) 一,技术简介 DHCP中继,可以实现在不同子网和物理网段之间处理和转发DHCP信息的功能。如果DHCP客户机与DHCP服务器在同一个物理网段,则客户机可以正确地获得动态分配的IP…...

基于SpringBoot的“心灵治愈交流平台”的设计与实现(源码+数据库+文档+PPT)
基于SpringBoot的“心灵治愈交流平台”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能界面图 登录、用户注册界面图 心灵专…...

【SpringBoot】自定义工具类实现Excel数据新建表存入MySQL数据库
🏡浩泽学编程:个人主页 🔥 推荐专栏:《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 🛸学无止境,不骄不躁,知行合一 文章目录 …...

Retelling|Facebook1
录音 Facebook 1 Retelling|Facebook1 复述转写 Today Im totally going to talk about Facebook. The aspects of this (its)rising fame and fortune, and the rise (小停顿)in(rising) fame and fortune of s founder Mark Zuckerberg, Mark Zuckerberg created this plat…...

【2024-03-12】设计模式之模板模式的理解
实际应用场景:制作月饼 过程描述: 一开始,由人工制作月饼, 第一个:根据脑子里面月饼的形状,先涅出月饼的形状,然后放入面粉和馅料把开口合并起来。 第二个:根据脑子里面月饼的形状&…...

Transformer模型引领NLP革新之路
在不到4 年的时间里,Transformer 模型以其强大的性能和创新的思想,迅速在NLP 社区崭露头角,打破了过去30 年的记录。BERT、T5 和GPT 等模型现在已成为计算机视觉、语音识别、翻译、蛋白质测序、编码等各个领域中新应用的基础构件。因此&#…...

【Kotlin】运算符函数、解构函数、中缀函数
1 一元运算符 1.1 符号和函数 符号函数aa.unaryPlus()-aa.unaryMinus()!aa.not()aa.dec()a--a.inc() 1.2 案例 fun main() {var stu Student("Tom", 13)println(-stu) // 打印: [moT, 31] }class Student(var name: String, var age: Int) {operator fun unaryM…...

springboot268码头船只货柜管理系统
码头船只出行和货柜管理系统的设计与实现 摘要 针对于码头船只货柜信息管理方面的不规范,容错率低,管理人员处理数据费工费时,采用新开发的码头船只货柜管理系统可以从根源上规范整个数据处理流程。 码头船只货柜管理系统能够实现货柜管理…...

Java面试题11MySQL之执行计划到事务及慢查询
你对MySQL执行计划怎么看 执行计划就是SQL的执行查询的顺序,以及如何使用索引查询,返回的结果集的行数 在MySQL中,我们可以通过explain命令来查看执行计划。其语法如下: EXPLAIN SELECT * FROM table_name WHERE conditions;在…...

算法时空复杂度分析:大O表示法
文章目录 前言大O表示法3个时间复杂度分析原则常见的时间复杂度量级空间复杂度参考资料 前言 算法题写完以后,面试官经常会追问一下你这个算法的时空复杂度是多少?(好像作为一名算法工程师,我日常码代码的过程中,并没…...

threejs简单创建一个几何体(一)
1.下包引入 //下包 npm install three yarn add three//引入 import * as THREE from three2.创建场景,摄像机 // 1.创建场景const scene new THREE.Scene()// 2.创建摄像机//第一个参数是视角,一般在60-90之间,第二个参数是场景的尺寸,一般取显示器的宽高,第三个参数是开始位…...

msfconsole数据库连接不了的问题【已解决】
msfconsole数据库连接 1.msf数据库端口 msf使用的是postgresql,这个数据库默认端口是5432 单个模块的使用可以不需要数据库,但是模块与模块之间需要沟通的时候就会用到数据库。 2.查看msf数据库连接状态 db_status #msf内部查看systemctl status p…...

7. Linux进程环境
进程是操作系统运行程序的一个实例,也是操作系统分配资源的单位。在Linux环境中,每个进程都有独立的进程空间,以便对不同的进程进行隔离,使之不会互相影响。深入理解Linux下的进程环境, 可以帮助我们写出更健壮的代码。 在 Linux 中,进程是程序的一次执行过程,它包含了程…...

[linux] 静态图和动态图
动态图(Dynamic Graphs)和静态图(Static Graphs)通常用来描述深度学习框架中模型的构建方式。 静态图(Static Graphs) 静态图是指模型的计算图在运行前就被定义好并且编译优化的方式。也就是说,…...

1.Spring核心功能梳理
概述 本篇旨在整体的梳理一下Spring的核心功能,让我们对Spring的整体印象更加具体深刻,为接下来的Spring学习打下基础。 本片主体内容如下: Bean的生命周期依赖注入的实现Bean初始化原理推断构造方法原理AOP的实现这里要说明一下,我们这里说到的Spring,一般指的是Spring F…...

活动预告:如何培养高质量应用型医学人才?
在大数据时代与“新医科”建设的背景下,掌握先进的医学数据处理技术成为了医学研究与应用的重要技能。 为了更好地培养社会所需要的高质量应用型医学人才,许多高校已经在广泛地开展面向医学生的医学数据分析教学工作。 在“课-训-赛”育人才系列活动的…...

蓝桥杯算法错题记录-基础篇
文章目录 本文还在跟新,最新跟新时间3/11!!! 格式一定要符合要求,(输入,输出格式)1. nextInt () next() nextLine() 的注意事项2 .数的幂 a^2等3.得到最大长度(最大...&a…...

Java知识点之单例模式
1、单例模式(Binary Search) 单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例。在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡的驱动程序对象常被设计成单例。这些应用都或多或少具有资…...

Flutter第三弹:常用的Widget
目标: 1)常用的Widget有哪些?有什么特征? 2)开发一个简单的登录页面。 一、Flutter常用Widget 对于Flutter来说,一切皆Widget. 常用的Widget,包括一些基础功能的Widget. 控件名称功能备注…...

Dynamic Wallpaper v17.4 mac版 动态视频壁纸 兼容 M1/M2
Dynamic Wallpaper Engine 是一款适用于 Mac 电脑的视频动态壁纸, 告别单调的静态壁纸,拥抱活泼的动态壁纸。内置在线视频素材库,一键下载应用,也可导入本地视频,同时可以将视频设置为您的电脑屏保。 应用介绍 Dynam…...