*地宫取宝c++
题目

输入样例1:
2 2 2
1 2
2 1
输出样例1:
2
输入样例2:
2 3 2
1 2 3
2 1 5
输出样例2:
14
思路
题目说从入口开始,只能向右或向下行走到达右下角,类似“摘花生”这道题的模型。题目又说只有当格子里的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它,也就说拿到的宝贝价值严格单调递增,是“单调递增子序列”的模型。
状态表示:
那用几维才能表示一个状态呢?首先,需要用 i, j 来表示从起点走到 (i, j) 这个格子的所有路径方案数;然后,需要用ki来表示从起点走到(i, j)这个格子拿了多少个物品;最后,由于拿到的宝贝价值要严格单调递增,因此需要用C表示拿到的最后一个物品的价值。
那为什么我们不用最后一个物品的坐标来表示状态呢,通过坐标也可以得到最后一个物品的价值啊?因为有50 x 50个坐标,并且是这样做会使一个状态表示的维数达到五维,时间复杂度也会增加。题目中取到宝贝的价值有限(0≤Ci≤12),因此可以用C代表最后取到的宝贝的最大值即可,这样可以将维数降到四维。
综上所述,我们可以将集合f[i][j][ki][c]定义为所有从起点走到(i,j),且已经取了ki件物品,且最后一件物品的价值是C的合法方案的集合。集合属性为满足集合定义的方案数总和。
状态计算:
由于到达(i, j)这个点只能从左边或上边来,因此可以将集合划分为所有最后一步是从上往下走的走法的集合和所有最后一步是从左往右走的走法的集合。而对于所有最后一步是从上往下走的走法的集合,又可以划分为取不取(i, j)这个格子的宝贝这两个小的集合,当要取(i, j)这个格子的宝贝时,说明这个格子里宝贝价值value比前面拿到的任何宝贝的价值都大,并且,根据集合定义,f[i][j][ki][c]存的是最后一件物品的价值是c的合法方案的集合,因此,当枚举c时,若要取(i, j)这个格子的宝贝还需要满足value等于c。
边界处理
需要注意的是,由于宝贝的价值可能为0,当左上角格子的的宝贝价值为0时,不拿可以表示为f[1][1][0][0] = 1,但下一步(向右或向下走)遇到一个格子的宝贝价值为0,就不能拿了,因为题目要求拿到的宝贝价值要严格单调递增;而实际上,若没有拿左上角格子价值为0的宝贝,在下一步遇到一个价值为0的宝贝是可以选择拿或不拿的。
对此,我们可以将所有格子里宝贝的价值都加上1,宝贝价值区间变成1≤Ci≤13;当c为0时表示还没有拿过任何一件宝贝,“最后一个物品价值为0”。这样处理后,当左上角格子的的宝贝价值为1时,不拿可以表示为f[1][1][0][0] = 1,当下一步(向右或向下走)遇到一个格子的宝贝价值为1,就可以选择拿或不拿了。
int 范围为2.1 x 10^9,因此val最多加两个数就要取模了。

代码
#include<bits/stdc++.h>
using namespace std;
const int MOD = 1000000007, N = 55;
int a[N][N], f[N][N][13][14];
int n, m, k, res;int main()
{cin >> n >> m >> k;for (int i = 1; i <= n; i ++){for (int j = 1; j <= m; j ++){cin >> a[i][j];a[i][j] ++;}}int res = 0;f[1][1][1][a[1][1]] = 1, f[1][1][0][0] = 1;for (int i = 1; i <= n; i ++){for (int j = 1; j <= m; j ++){if (i == 1 && j == 1) continue;for (int ki = 0; ki <= k; ki ++){for (int value = 0; value <= 13; value ++){int &val = f[i][j][ki][value];//不能选(i, j)这个格子里的宝贝//从上往下走,并且不取(i, j)上的宝贝的方案数val = (val + f[i - 1][j][ki][value]) % MOD;//从左往右走,并且不取(i, j)上的宝贝的方案数val = (val + f[i][j - 1][ki][value]) % MOD;if (ki > 0 && value == a[i][j]){for (int c = 0; c < value; c ++){//从前面的状态中选价值c < value并且选了ki - 1件的fval = (val + f[i - 1][j][ki - 1][c]) % MOD;val = (val + f[i][j - 1][ki - 1][c]) % MOD;}}}}}}for (int i = 1; i <= 13; i ++) res = (res + f[n][m][k][i]) % MOD;cout << res;return 0;
}
感觉DP就是根据集合定义打好表,算出全部的状态的值,然后查询表中符合题目要求的状态值。
相关文章:
*地宫取宝c++
题目 输入样例1: 2 2 2 1 2 2 1输出样例1: 2输入样例2: 2 3 2 1 2 3 2 1 5输出样例2: 14 思路 题目说从入口开始,只能向右或向下行走到达右下角,类似“摘花生”这道题的模型。题目又说只有当格子里的宝…...
同态滤波算法详解
同态滤波是一种用于增强图像的方法,特别适用于去除图像中的照明不均和阴影。该算法基于照射反射模型,将图像分解为两个分量:照射分量(illumination component)和反射分量(reflection component)…...
财务管理系统报账和挂账分别什么区别!报销又是什么【第三期】
前言 已经写了两期 财务管理系统之saas多租户架构是什么以及分库分表以及如何选择分布式事务方案 【程序员聊业务】财务管理系统之模块分类 报账和挂账概念 报账是指企业或个人因业务需要而发生的各项费用支出,在支付后,需要将相关的票据、凭证等提交…...
最少刷题数
最少刷题数 题目分析 对于每一名同学计算还需要再刷多少题才能保证刷题数比他多的人数不超过刷题数比他少的学生人数。我们可以考虑统计每一个分数的前缀和数组,sum[i]表示当前学生中,刷题数小于等于i的人数。那么对于学生i的刷题数a[i],su…...
Python刘诗诗
写在前面 刘诗诗在电视剧《一念关山》中饰演了女主角任如意,这是一个极具魅力的女性角色,她既是一位有着高超武艺和智慧的女侠士,也曾经是安国朱衣卫前左使,身怀绝技且性格坚韧不屈。剧中,任如意因不满于朱衣卫的暴行…...
探索ChatGPT在软件架构师工作中的应用
随着人工智能技术的不断发展,自然语言处理模型如OpenAI的ChatGPT已经成为了解决各种实际问题的强大工具之一。在软件架构师这个领域,ChatGPT也有着广泛的应用。本文将探讨软件架构师如何有效地利用ChatGPT来解决问题和提高工作效率。 ChatGPT简介 Chat…...
pytest--allure报告中添加用例详情
前言 前面介绍了如何生成allure的报告,看着allure的页面非常好看,但是感觉少了一些内容,allure还可以增加一些用例详情内容,这样让我们的报告看着更加绚丽。 allure增加用例详情 我们可以在报告测试套件中增加用例详情内容。 …...
【深度学习笔记】9_5 多尺度目标检测
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 9.5 多尺度目标检测 在9.4节(锚框)中,我们在实验中以输入图像的每个像素为中心生成多个锚框。这些…...
Linux--vim
一.什么是vim Vim(Vi IMproved)是一种文本编辑器,通常在Linux和其他类Unix操作系统中使用。它是Vi编辑器的增强版本,提供了更多的功能和定制选项。Vim具有强大的文本编辑和编程功能,支持语法高亮、代码折叠、宏录制、…...
FreeRTOS操作系统学习——中断管理
中断管理介绍 嵌入式实时系统需要对整个系统环境产生的事件作出反应。这些事件对处理时间和响应时间都有不同的要求。事件通常采用中断方式检测,中断服务例程(ISR)中的处理量应当越短越好。ISR是在内核中被调用的, ISR执行过程中,用户的任务…...
DHCP中继实验(思科)
华为设备参考:DHCP中继实验(华为) 一,技术简介 DHCP中继,可以实现在不同子网和物理网段之间处理和转发DHCP信息的功能。如果DHCP客户机与DHCP服务器在同一个物理网段,则客户机可以正确地获得动态分配的IP…...
基于SpringBoot的“心灵治愈交流平台”的设计与实现(源码+数据库+文档+PPT)
基于SpringBoot的“心灵治愈交流平台”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能界面图 登录、用户注册界面图 心灵专…...
【SpringBoot】自定义工具类实现Excel数据新建表存入MySQL数据库
🏡浩泽学编程:个人主页 🔥 推荐专栏:《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 🛸学无止境,不骄不躁,知行合一 文章目录 …...
Retelling|Facebook1
录音 Facebook 1 Retelling|Facebook1 复述转写 Today Im totally going to talk about Facebook. The aspects of this (its)rising fame and fortune, and the rise (小停顿)in(rising) fame and fortune of s founder Mark Zuckerberg, Mark Zuckerberg created this plat…...
【2024-03-12】设计模式之模板模式的理解
实际应用场景:制作月饼 过程描述: 一开始,由人工制作月饼, 第一个:根据脑子里面月饼的形状,先涅出月饼的形状,然后放入面粉和馅料把开口合并起来。 第二个:根据脑子里面月饼的形状&…...
Transformer模型引领NLP革新之路
在不到4 年的时间里,Transformer 模型以其强大的性能和创新的思想,迅速在NLP 社区崭露头角,打破了过去30 年的记录。BERT、T5 和GPT 等模型现在已成为计算机视觉、语音识别、翻译、蛋白质测序、编码等各个领域中新应用的基础构件。因此&#…...
【Kotlin】运算符函数、解构函数、中缀函数
1 一元运算符 1.1 符号和函数 符号函数aa.unaryPlus()-aa.unaryMinus()!aa.not()aa.dec()a--a.inc() 1.2 案例 fun main() {var stu Student("Tom", 13)println(-stu) // 打印: [moT, 31] }class Student(var name: String, var age: Int) {operator fun unaryM…...
springboot268码头船只货柜管理系统
码头船只出行和货柜管理系统的设计与实现 摘要 针对于码头船只货柜信息管理方面的不规范,容错率低,管理人员处理数据费工费时,采用新开发的码头船只货柜管理系统可以从根源上规范整个数据处理流程。 码头船只货柜管理系统能够实现货柜管理…...
Java面试题11MySQL之执行计划到事务及慢查询
你对MySQL执行计划怎么看 执行计划就是SQL的执行查询的顺序,以及如何使用索引查询,返回的结果集的行数 在MySQL中,我们可以通过explain命令来查看执行计划。其语法如下: EXPLAIN SELECT * FROM table_name WHERE conditions;在…...
算法时空复杂度分析:大O表示法
文章目录 前言大O表示法3个时间复杂度分析原则常见的时间复杂度量级空间复杂度参考资料 前言 算法题写完以后,面试官经常会追问一下你这个算法的时空复杂度是多少?(好像作为一名算法工程师,我日常码代码的过程中,并没…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
