当前位置: 首页 > news >正文

【Pytorch】AutoGrad个人理解

前提知识:[Pytorch] 前向传播和反向传播示例_友人小A的博客-CSDN博客

目录

简介

叶子节点

Tensor AutoGrad Functions


简介

torch.autograd是PyTorch的自动微分引擎(自动求导),为神经网络训练提供动力。torch.autograd需要对现有代码进行最少的更改——声明需要计算梯度的Tensor的属性requires_grad=True。截至目前,PyTorch仅支持 FloatTensor类型(half、float、double和bfloat16)和 ComplexTensor(cfloat、cdouble)的autograd。【信息来自官网】

叶子节点

叶子结点是离散数学中的概念。一棵树当中没有子结点(即度为0)的结点称为叶子结点,简称“叶子”。 叶子是指出度为0的结点,又称为终端结点。

在pytorch中,什么是叶子节点?根据官方定义理解如下。

  • 所有requires_grad为False的张量,都约定俗成地归结为叶子张量
  • requires_grad为True的张量, 如果他们是由用户创建的,则它们是叶张量(leaf Tensor), 表明不是运算的结果,因此grad_fn=None

示例1

def test_training_pipeline2():input_data = [[4, 4, 4, 4],[9, 9, 9, 9]]  # 2x4input = torch.tensor(input_data, dtype=torch.float32)  # requires_grad=Falseoutput = torch.sqrt(input)target_data = [1, 2, 3, 4]target = torch.tensor(target_data, dtype=torch.float32)  # requires_grad=Falseloss_fn = torch.nn.MSELoss()loss = loss_fn(input=output, target=target)print("\ninput.is_leaf:", input.is_leaf)print("output.requires_grad:", output.requires_grad)print("output.is_leaf:", output.is_leaf)print("target.is_leaf:", target.is_leaf)print("loss.requires_grad:", loss.requires_grad)print("loss.is_leaf:", loss.is_leaf)

样例2

def test_training_pipeline2():input_data = [[4, 4, 4, 4],[9, 9, 9, 9]]  # 2x4input = torch.tensor(input_data, dtype=torch.float32)  # requires_grad=Falseoutput = torch.sqrt(input)output.requires_grad_(True) # requires_grad=Truetarget_data = [1, 2, 3, 4]target = torch.tensor(target_data, dtype=torch.float32)  # requires_grad=Falseloss_fn = torch.nn.MSELoss()loss = loss_fn(input=output, target=target)print("\ninput.is_leaf:", input.is_leaf)print("output.requires_grad:", output.requires_grad)print("output.is_leaf:", output.is_leaf)print("target.is_leaf:", target.is_leaf)print("loss.requires_grad:", loss.requires_grad)print("loss.is_leaf:", loss.is_leaf)

样例3

 

def test_training_pipeline5():input = torch.rand(1, requires_grad=True)output = torch.unique(input=input, sorted=True, return_inverse=False, return_counts=False, dim=None)print("\ninput.is_leaf:", input.is_leaf)print("output.requires_grad:", output.requires_grad)print("output.is_leaf:", output.is_leaf)output.backward()

样例4

def test_training_pipeline3():input_data = [[4, 4, 4, 4],[9, 9, 9, 9]]  # 2x4input_a = torch.tensor(input_data, dtype=torch.float32, requires_grad=True)input_b = torch.tensor(input_data, dtype=torch.float32, requires_grad=True)output = torch.ne(input_a, input_b)print("\ninput_a.is_leaf:", input_a.is_leaf)print("input_b.is_leaf:", input_b.is_leaf)print("output.dtype:", output.dtype)print("output.requires_grad:", output.requires_grad)print("output.is_leaf:", output.is_leaf)output.backward()   # 报错

 

 

样例5

def test_training_pipeline7():input_data = [[4, 4, 4, 4],[9, 9, 9, 9]]  # 2x4input_a = torch.tensor(input_data, dtype=torch.float32, requires_grad=True)input_b = torch.tensor(input_data, dtype=torch.float32)    output = torch.add(input_a, input_b)print("\ninput_a.requires_grad:", input_a.requires_grad)print("input_b.requires_grad:", input_b.requires_grad)print("output.requires_grad:", output.requires_grad)print("output.is_leaf:", output.is_leaf)grad = torch.ones_like(output)input_b[0][0] = 10 input_a[0][0] = 10 output.backward(grad)

 样例6

def test_training_pipeline9():x = torch.tensor([1.0], requires_grad=True)y = x + 2z = 2 * y		# <-- dz/dy=2y[0] = -2.0print("\nx.is_leaf:", x.is_leaf)print("y.is_leaf:", y.is_leaf)print("z.is_leaf:", z.is_leaf)print("\nx.requires_grad:", x.requires_grad)print("y.requires_grad:", y.requires_grad)print("z.requires_grad:", z.requires_grad)z.backward()def test_training_pipeline9():x = torch.tensor([1.0], requires_grad=True)y = x + 2z = y * y  # <-- dz/dy= 2*yy[0] = -2.0print("\nx.is_leaf:", x.is_leaf)print("y.is_leaf:", y.is_leaf)print("z.is_leaf:", z.is_leaf)print("\nx.requires_grad:", x.requires_grad)print("y.requires_grad:", y.requires_grad)print("z.requires_grad:", z.requires_grad)z.backward()

 

Tensor AutoGrad Functions

  1. Tensor.grad

  2. Tensor.requires_grad

  3. Tensor.is_leaf

  4. Tensor.backward(gradient=None, reqain_graph=None, create_graph=False)

  5. Tensor.detach()

  6. Tensor.detach_()

  7. Tensor.retain_grad()

相关文章:

【Pytorch】AutoGrad个人理解

前提知识&#xff1a;[Pytorch] 前向传播和反向传播示例_友人小A的博客-CSDN博客 目录 简介 叶子节点 Tensor AutoGrad Functions 简介 torch.autograd是PyTorch的自动微分引擎&#xff08;自动求导&#xff09;&#xff0c;为神经网络训练提供动力。torch.autograd需要对…...

华硕z790让独显和集显同时工作

系统用了一段时间&#xff0c;现在想让显卡主要做深度学习训练&#xff0c;集显用来连接显示器。却发现显示器接到集显接口无信号。 打售后客服也没有解决&#xff0c;现在把解决方案记录一下。 这是客服给的方案&#xff1a; 请开机后进BIOS---Advanced---System Agent (SA)…...

提高编程思维的python代码

1.通过函数取差。举例&#xff1a;返回有差别的列表元素 from math import floordef difference_by(a,b,fn):b set(map(fn, b))return [i for i in a if fn(i) not in b] print(difference_by([2.1, 1.2], [2.3, 3.4], floor))2.一行代码调用多个函数 def add(a, b):return …...

CSS背景background属性整理

1.background-color background-color属性&#xff1a;设置元素的背景颜色 2.background-position background-position属性&#xff1a;设置背景图像的起始位置&#xff0c;需要把 background-attachment 属性设置为 "fixed"&#xff0c;才能保证该属性在 Firefo…...

AQS底层源码深度剖析-Lock锁

目录 AQS底层源码深度剖析-Lock锁 ReentrantLock底层原理 为什么把获取锁失败的线程加入到阻塞队列中&#xff0c;而不是采取其它方法&#xff1f; 总结&#xff1a;三大核心原理 CAS是啥&#xff1f; 代码模拟一个CAS&#xff1a; 公平锁与非公平锁 可重入锁的应用场景&…...

网络编程(二)

6. TCP 三次握手四次挥手 HTTP 协议是 Hype Transfer Protocol&#xff08;超文本传输协议&#xff09;的缩写&#xff0c;是用于从万维网&#xff08;WWW&#xff1a;World Wide Web&#xff09;服务器&#xff08;sever&#xff09;传输超文本到客户端&#xff08;本地浏览器…...

访问学者进入美国哪些东西不能带?

随着疫情的稳定&#xff0c;各国签证的逐步放开&#xff0c;成功申请到国外访问学者、博士后如何顺利的进入国外&#xff0c;哪些东西不能带&#xff0c;下面就随知识人网小编一起看一看。一、畜禽肉类(Meats, Livestock and Poultry)不论是新鲜的、干燥的、罐头的、真空包装的…...

灵巧手抓持<分类><仿真>

获取灵巧手抓取物体时的抓持类型&#xff0c;需要考虑&#xff1a;手本身的结构、被抓取物体的形状尺寸、抓持操作任务的条件。 研究方法&#xff1a;基于模型的方法、基于数据驱动的方法 基于模型的方法&#xff1a;建立灵巧手抓持相关的运动学和动力学模型建立目标函数求解…...

CENTO OS上的网络安全工具(十九)ClickHouse集群部署

一、VMware上集群部署ClickHouse &#xff08;一&#xff09;网络设置 1. 通过修改文件设置网络参数 &#xff08;1&#xff09;CentOS 在CENTOS上的网络安全工具&#xff08;十六&#xff09;容器特色的Linux操作_lhyzws的博客-CSDN博客中我们提到过可以使用更改配置文件的方式…...

tesseract -图像识别

下载链接&#xff1a;https://digi.bib.uni-mannheim.de/tesseract/如下选择最新的版本&#xff0c;这里我选择tesseract-ocr-w64-setup-5.3.0.20221222.exe有如下python模块操作tesseractpyocr 国内源&#xff1a;pip install -i https://pypi.mirrors.ustc.edu.cn/simple/ py…...

JavaScript Math 算数对象

文章目录JavaScript Math 算数对象Math 对象Math 对象属性Math 对象方法算数值算数方法JavaScript Math 算数对象 Math&#xff08;算数&#xff09;对象的作用是&#xff1a;执行常见的算数任务。 Math 对象 Math&#xff08;算数&#xff09;对象的作用是&#xff1a;执行普…...

一体机HDATA节点添加和删除

瀚高数据库 目录 文档用途 详细信息 文档用途 一体机可在线添加、删除数据库集群节点。 详细信息 一体机可在线添加、删除数据库集群节点。具体操作步骤如下 一、节点添加 集群可以在其他机器上通过配置hghac.yaml文件&#xff0c;将新节点加入集群。 集群操作 1&#xf…...

关于 interface{} 会有啥注意事项?上

学习 golang &#xff0c;对于 interface{} 接口类型&#xff0c;我们一定绕不过&#xff0c;咱们一起来看看 使用 interface{} 的时候&#xff0c;都有哪些注意事项吧 interface {} 可以用于模拟多态 xdm 咱们写一个简单的例子&#xff0c;就举动物的例子 写一个 Animal 的…...

Matlab中旧版modem.qammod与新版不兼容

最近&#xff0c;因为课题需要&#xff0c;在研究通信。在网上下了一个2015年左右的代码&#xff0c;其中用的是matlab旧版中的modem.qammod函数&#xff0c;但是旧版中的函数已经被删除了&#xff0c;&#xff08;这里必须得吐槽一下&#xff0c;直接该函数内部运行机制就行呀…...

通达信指标公式颜色代码的四种写法(COLOR/RGB)

通达信指标公式颜色代码有四种写法&#xff0c;分别为COLOR颜色的英文、COLOR十六进制、RGBX十六进制、RGB(R,G,B)。标题有点尴尬&#xff0c;让我想到孔乙己“茴”字的四种写法&#xff0c;哈哈。 一、COLOR颜色的英文 “COLOR颜色的英文”这种写法比较简单&#xff0c;函数库…...

小程序面试题收集(持续更新中...)

小程序面试题收集 1.请谈谈微信小程序主要目录和文件的作用 project.config.json&#xff1a;项目配置文件&#xff0c;用的最多的就是配置是否开启https校验App.js&#xff1a;设置一些全局的基础数据等App.json&#xff1a;底部tab&#xff0c;标题栏和路由等设置App.wxss&…...

最深情的告白——郁金香(Python实现)

目录 1 最深情的告白 2 即兴赞之 2.1 李小白言郁金香 2.2 郁金香般的姑娘 2.3 荷兰的郁金香 3 Python代码实现 3.1 郁金香的芬芳 3.2 我俩绚丽多姿的风景 1 最深情的告白 曾经以为&#xff0c;她爱玫瑰&#xff0c;然后我画了好几种&#xff1a; 花仙子——玫瑰&a…...

代码随想录算法训练营第六天|242.有效的字母异位词 、349. 两个数组的交集 、 202. 快乐数、1. 两数之和

当我们遇到了要快速判断一个元素是否出现集合里的时候&#xff0c;就要考虑哈希法。哈希法是牺牲了空间换取了时间&#xff0c;要使用额外的数组&#xff0c;set或者是map来存放数据&#xff0c;才能实现快速的查找。当我们要使用集合来解决哈希问题的时候&#xff0c;优先使用…...

【STL】模拟实现list

目录 1、list介绍 所要实现类及其成员函数接口总览 2、结点类的模拟实现 基本框架 构造函数 3、迭代器类的模拟实现 迭代器类存在的意义 3.1、正向迭代器 基本框架 默认成员函数 构造函数 运算符重载 --运算符重载 !运算符重载 运算符重载 *运算符重载 …...

Spring Cloud Alibaba全家桶(五)——微服务组件Nacos配置中心

前言 本文小新为大家带来 微服务组件Nacos配置中心 相关知识&#xff0c;具体内容包括Nacos Config快速开始指引&#xff0c;搭建nacos-config服务&#xff0c;Config相关配置&#xff0c;配置的优先级&#xff0c;RefreshScope注解等进行详尽介绍~ 不积跬步&#xff0c;无以至…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念&#xff1a; 1&#xff09;ZYNQ全称&#xff1a;ZYNQ7000 All Pgrammable SoC 2&#xff09;SoC:system on chips(片上系统)&#xff0c;对比集成电路的SoB&#xff08;system on board&#xff09; 3&#xff09;ARM&#xff1a;处理器…...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...