当前位置: 首页 > news >正文

Elasticsearch(9) gauss的使用

elasticsearch version: 7.10.1
在Elasticsearch中,gauss作为衰减函数(decay function)被用于function_score查询中,用于实现基于地理位置或其他数值字段的衰减权重评分。gauss衰减函数模拟了高斯分布,即距离中心点越近的文档,其得分越高;随着距离增大,得分按照高斯分布规律衰减。

gauss的语法

GET /your_index/_search
{"query": {"function_score": {"query": { // 基础查询,可以是任何有效的Elasticsearch查询"match_all": {}},"functions": [{"gauss": {// 距离衰减字段,这里假设是location"location": {// 中心点坐标"origin": "51.5074, -0.1278", // 伦敦市中心经纬度// 高斯衰减的标准化差(sigma),影响衰减速度"scale": "10km", // 单位可以是千米、米等// 斜率因子(offset),影响衰减起点"offset": "0km",// 缩放因子(decay),影响衰减陡峭程度"decay": 0.5}}}]}}
}
  • location字段(假定为地理位置类型)与指定中心点的距离来计算衰减得分
  • scale参数决定了衰减的速度,即距离中心点多少单位后得分下降一半
  • offset参数可以让衰减在距离中心点一定距离后才开始
  • decay参数是对衰减曲线的进一步调整,控制衰减的陡峭程度

标题

gauss的案例

场景

假设我们有一个商店索引,其中包含地理位置信息,并且我们希望根据顾客位置对其附近的商店进行优先排序

索引创建

PUT /shops
{"mappings": {"properties": {"name": {"type": "text"},"location": {"type": "geo_point"}}}
}

文档插入

POST /shops/_doc
{"name": "Shop A","location": "51.5074,-0.1278" // 伦敦大本钟坐标
}POST /shops/_doc
{"name": "Shop B","location": "48.8566,2.3522" // 巴黎埃菲尔铁塔坐标
}POST /shops/_doc
{"name": "Shop C","location": "40.7128,-74.0060" // 纽约时代广场坐标
}POST /shops/_doc
{"name": "Shop D","location": "37.7749,-122.4194" // 旧金山金门大桥坐标
}POST /shops/_doc
{"name": "Shop E","location": "-33.8521,151.2111" // 悉尼歌剧院坐标
}POST /shops/_doc
{"name": "Shop F","location": "55.7507,37.6173" // 莫斯科红场坐标
}POST /shops/_doc
{"name": "Shop G","location": "35.6895,139.6917" // 东京晴空塔坐标
}POST /shops/_doc
{"name": "Shop H","location": "-23.5505,-46.6333" // 圣保罗独立公园坐标
}

查询语句

GET /shops/_search
{"query": {"function_score": {"query": { "match_all": {} // 这里仅作示例,实际应用中应替换为更具针对性的查询条件},"functions": [{"gauss": {"location": {"origin": "51.5074,-0.1278", // 用户所在位置坐标"scale": "10km", // 衰减半径为10公里"offset": "0km", // 衰减起始位置为零"decay": 0.5 // 衰减指数}}}],"score_mode": "multiply", // 各项得分的组合方式"boost_mode": "replace" // 得分替换还是累加}}
}

相关文章:

Elasticsearch(9) gauss的使用

elasticsearch version: 7.10.1 在Elasticsearch中,gauss作为衰减函数(decay function)被用于function_score查询中,用于实现基于地理位置或其他数值字段的衰减权重评分。gauss衰减函数模拟了高斯分布,即距…...

php前端和java后端数据调用流程

php前端和java后端数据调用流程 前端 1、新建php页面title.php <title>标题</title> <td width"30%" class"form-key">标题内容</td> <td width"70%"><input type"text" class"form-control…...

C语言从入门到熟悉------第四阶段

指针 地址和指针的概念 要明白什么是指针&#xff0c;必须先要弄清楚数据在内存中是如何存储的&#xff0c;又是如何被读取的。如果在程序中定义了一个变量&#xff0c;在对程序进行编译时&#xff0c;系统就会为这个变量分配内存单元。编译系统根据程序中定义的变量类型分配…...

【目标检测-数据集准备】DIOR转为yolo训练所需格式

【目标检测】DIOR遥感影像数据集&#xff0c;转为yolo系列模型训练所需格式。 标签文件位于Annotations下&#xff0c;格式为xml&#xff0c;yolo系列模型训练所需格式为txt&#xff0c;格式为 class_id x_center,y_center,w,h其中&#xff0c;train&#xff0c;text&#xff…...

Nacos为什么对于临时实例采用心跳检测,非临时实例采用主动询问?Nacos同时作为配置中心和注册中心有什么坏处?为什么Nacos可以抗住那么高的注册?

Nacos为什么对于临时实例采用心跳检测,非临时实例采用主动询问? Nacos 对于临时实例采用心跳检测&#xff0c;而对于非临时实例采用主动询问&#xff0c;这两种不同的健康检查机制是为了满足不同场景下的服务发现需求。具体分析如下&#xff1a; 临时实例的心跳检测&#xf…...

【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型

1 问题 通过以下代码&#xff0c;实现加载word2vec词向量&#xff0c;每次加载都是几分钟&#xff0c;效率特别低。 from gensim.models import Word2Vec,KeyedVectors# 读取中文词向量模型&#xff08;需要提前下载对应的词向量模型文件&#xff09; word2vec_model KeyedV…...

前端实例:页面布局1(后端数据实现)

效果图 注&#xff1a;这里用到后端语言php&#xff08;页面是.php文件&#xff09;,提取纯html也可以用 inemployee_index.php <?php include(includes/session.inc); $Title _(内部员工首页); $ViewTopic 内部员工首页; $BookMark 内部员工首页; include(includes/…...

【调参】如何为神经网络选择最合适的学习率lr-LRFinder-for-Keras

【调参】如何为神经网络选择最合适的学习率lr-LRFinder-for-Keras_学习率选择-CSDN博客文章浏览阅读9.2k次&#xff0c;点赞6次&#xff0c;收藏55次。keras 版本的LRFinder&#xff0c;借鉴 fast.ai Deep Learning course。前言学习率lr在神经网络中是最难调的全局参数&#x…...

【设计模式】Java 设计模式之享元模式(Flyweight)

享元模式&#xff08;Flyweight&#xff09;的深入分析 一、概述 享元模式是一种结构型设计模式&#xff0c;它提供了一种有效的方式来减少在大量对象中产生的内存开销。通过共享尽可能多的对象&#xff0c;享元模式可以使程序更高效地使用内存。享元模式常用于那些创建对象实…...

异次元发卡源码系统/荔枝发卡V3.0二次元风格发卡网全开源源码

– 支付系统&#xff0c;已经接入易支付及Z支付免签接口。 – 云更新&#xff0c;如果系统升级新版本&#xff0c;你无需进行繁琐操作&#xff0c;只需要在你的店铺后台就可以无缝完成升级。 – 商品销售&#xff0c;支持商品配图、会员价、游客价、邮件通知、卡密预选&#…...

腾讯春招后端一面(八股篇)

前言 前几天在网上发了腾讯面试官问的一些问题&#xff0c;好多小伙伴关注&#xff0c;今天对这些问题写个具体答案&#xff0c;博主好久没看八股了&#xff0c;正好复习一下。 面试手撕了三道算法&#xff0c;这部分之后更&#xff0c;喜欢的小伙伴可以留意一下我的账号。 1…...

“风口”上的量化大厂“绣球”抛向中低频人才

量化人才这几年是人才舞台上的“香饽饽”。 遵循着低频不如高频、小厂不如大厂的薪资逻辑&#xff0c;各路人才被各路机构“哄抢”&#xff0c;薪资一路走高。 但2024年的“信号”再强烈不过——量化大厂们到了改变的时候了。 而量化大厂们显然对此已“心知肚明”....... “…...

obdiag如何实现一键采集20+故障场景的诊断信息——《OceanBase诊断系列》之九

作者简介&#xff1a;靖顺&#xff0c;OcenaBase 开发工程师&#xff0c;专注于数据库诊断与调优 1. 前言 在2024年初&#xff0c;我与一线运维人员交流时&#xff0c;他们纷纷提及在运维过程中遭遇的难题——OceanBase出现问题时&#xff0c;排查工作不容易&#xff0c;有时需…...

Cookie和Session的获取方法

1、Cookie的简单获取方法&#xff08;可以获取到所有的cookie&#xff09; &#xff08;1&#xff09;在参数里还有HttpServletResponse response这些&#xff0c;这些都是内置对象需要就拿不需要就删掉就可以&#xff0c;在这里我们用到的是HttpServletRequest request &…...

旅游市场游客满意度调查报告

民安智库开展游客满意度调查主要通过问卷调查的方式进行&#xff0c;在设计问卷时&#xff0c;应确保问题覆盖游客在某省旅游过程中可能遇到的各个方面&#xff0c;包括交通、住宿、餐饮、旅游景点、导游服务等。此外&#xff0c;还可以设置一些开放性问题&#xff0c;让游客提…...

为什么选用python开发web?

目前&#xff0c;不少公司在用python做web开发&#xff0c;前司用pythonflask做内容审核的后端。 java和php在web开发领域积累较久&#xff0c;有丰富的web开发生态组件可以使用&#xff0c;性能稳定&#xff0c;扩展性强&#xff0c;这个是事实&#xff0c;从这方面来讲&…...

C# Chart曲线控件专题

1.控件基本设置 chart1.ChartAreas[0].AxisY.IsStartedFromZero false; //设置Y轴自适应chart1.Series["瞬时值"].BorderWidth 2; // 设置曲线宽度为2个像素&#xff0c;注意[]中写入的Series的Namechart1.Series["瞬时值"].Color Color.Red; // 设置曲…...

Spring:StopWatch

文章目录 一、介绍二、使用1、导入相关的Spring包2、创建StopWatch实例和开始计时3、停止计时4、获取时间5、获取任务详情6、分阶段计时7、获取总耗时与各阶段耗时 三、案例 一、介绍 在Spring框架中&#xff0c;StopWatch类通常用于测量代码块的执行时间。您可以使用StopWatc…...

考研C语言复习进阶(5)

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 3. 文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 4. 文件的顺序读写 ​编辑 ​编辑 4.1 对比一组函数&#xff1a; ​编辑 5. 文件的随机读写 5.1 fseek 5.2 ftell 5.3 rewind…...

[uni-app] 小程序码转为二维码, 小程序解析此码获取数据

小程序码缩小后太细, 不好扫, 还是改成二维码扫 记录解析该二维码 onLoad(e) {if (e.shareTimeline) { // 以单页面启动-朋友圈分享出的单页面this.shareTimeline e.shareTimeline;let param {certId: e.certId,uid: e.uid,unionid: e.unionid,openid: e.openid,}this.initD…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...