多模态大模型Claude 3正式接入集简云与语聚!对标GPT-4且支持中文
自OpenAI发布GPT-4以来,引发了业务模式与应用使用的巨大变革,掀起了各大企业对于多模态大模型的研究热潮。3月初,AnthropicClaude在官网正式发布Claude 3系列多模态大模型,据了解,该模型在多个维度上超越了GPT-4,为您总结一波Claude 3的部分能力提升:
- OCR和复杂场景解析方面提升;
- 解决高级数学和科学问题的能力增强;
- 轻松处理多语言文本;
- 可处理超过一百万个令牌的输入;
- 遵循具体指令完成创造性任务能力提升。
claude 3分为Haiku、Sonnet和Opus三个版本,目前集简云已将Opus和Sonnet快速上线至平台内,旨在为用户提供更高效、更智能的AI体验。

性能显著提升,对标GPT-4
Opus版本在包括专家推理、基础数学、代码等领域的性能评估中超越了GPT-4。Sonnet版本在知识检索任务上表现更胜一筹,不仅可以平衡处理速度和计算效率,同时兼顾经济性,在需要大规模部署的企业级应用场景中具有优势。
各版本模型均支持达20万tokens的上下文窗口,并为特定用户提供高达100万tokens的支持,有助于更好地理解和记忆长文本信息。

视觉能力更突出
Claude 3 擅长复杂视觉功能,他们可以处理各种视觉格式,包括照片、图表、图形和技术图表。比如一些客户的知识库各种格式排版,例如 PDF、流程图或演示幻灯片。
推理能力更好,智商更高
直接上传数学、物理等考验逻辑和准确度的理科题照片,或者细节丰富的图表,由于推理能力大幅增强,它回复的解题水平和准确率变高很多,并能在一些细节描述上比GPT-4更胜一筹。
准确性更高
为了减少幻觉问题,Anthropic将答案分为正确答案、错误答案(或幻觉)和承认不确定性,如果不知道,模型表示它不知道答案,而不是提供不正确的信息。与 Claude 2.1 相比,Opus 在这些具有挑战性的开放式问题上的准确性(或正确答案)提高了一倍,同时也减少了错误答案的水平。
使用示例
示例1:
这张示意图是什么意思?有哪些专业名词?请详细解释

这张图是关于基于LoRa无线网络的车位状态监测系统架构图,其中涉及到以下一些专业名词:
LoRa(Long Range): 一种低功耗广域网络(LPWAN)技术,适用于远距离、低速率、低功耗的物联网应用。
Web发布服务器: 用于发布和管理车位状态监测系统的Web应用服务器。
应用服务器: 接收并处理来自LoRa网关的车位状态数据,并将数据传输给Web发布服务器。
2G/3G/4G运营商网络: 移动通信网络,用于LoRa网关与应用服务器之间的数据传输。
LoRa网关: 将多个LoRa设备(即车位探测器)采集的数据汇聚,并通过2G/3G/4G网络将数据传输至应用服务器。
中口线: 一种无线通信中的概念,表示LoRa设备与LoRa网关之间的无线连接。
LoRa设备/车位探测器: 安装在每个车位上,通过LoRa无线技术实时监测车位状态(占用或空闲)并将数据传输至LoRa网关。
整个系统的工作流程如下:
LoRa车位探测器采集车位状态数据
探测器通过LoRa无线技术将数据传输至LoRa网关
网关通过2G/3G/4G网络将汇聚的数据传输至应用服务器
应用服务器处理数据后传输给Web发布服务器
用户通过Web发布服务器提供的应用程序查询车位状态信息

示例2:
2.1 解出该图中的两道题:

根据题目条件,解答如下:
(1) 物体到C点时的速度
设物体到C点的时间为t,由匀加速直线运动的速度公式v=v0+at,代入已知条件得:
v = 0 + 0.25t
物体运动的距离AC是:
AC = v0t + 1/2at^2 = 1/2 × 0.25t^2 = 0.125t^2
AC已知为1kg,即1000g的小物体压缩弹簧的长度0.5m,由胡克定律F=kx得:
1 × 10 = k × 0.5
解得弹簧劲度系数k=20N/m
由动能定理,小物体对弹簧做的功等于物体动能的增加,即:
1/2kx^2 = 1/2mv^2
代入数据:
1/2 × 20 × 0.5^2 = 1/2 × 1 × v^2
解得v = 2.24m/s,为物体到达C点时的速度
(2) 弹簧对物体做的功
将(1)中求出的速度代入x=vt-1/2at^2,其中x就是物体压缩弹簧的距离,t是物体做减速运动的时间,a是减速度0.25
解得x=0.125m
所以弹簧对物体做的功是:
W = 1/2kx^2 = 1/2 × 20 × 0.125^2 = 0.156J

2.2 解释补集法的概念,并用补集法计算这道概率题:"一家公司有两个部门,A部门3个男生,2个女生,B部门4个男生,6个女生,现在要派3个人去出差,要求每个部门至少出一人,那么至少有一个女生被派出的概率是多少?"
好的,下面我就解释补集法的概念并用补集法求解这道概率题。
补集法的概念:
设A是样本空间的一个事件,它的补集记为A',由样本空间中不属于A的样本点组成。根据补集法,P(A)=1-P(A')。
这个公式的意思是:事件A发生的概率,等于1减去事件A不发生的概率。补集法常用于求解"至少""不超过"等问题。
用补集法求解题目中的概率问题:
设至少有一个女生被派出的事件为A,那么A的补集A'就是所派出的3人全部是男生。
总的选派方案数为从15人(3+2+4+6)中选出3人,共有C(15,3)=455种
事件A'的方案数是从7个男生(3+4)中选3人,共有C(7,3)=35种
事件A的概率P(A)=1-P(A')=1-35/455=420/455=84/91≈92.31%
所以至少有一个女生被派出的概率是84/91,约为92.31%。

示例3:请把这个UI用代码还原出来


如何在集简云/语聚中使用
方式1:在数据流程搭建时选择Claude付费版 (无需账户),在所有动作中都已支持Claude 3模型Opus和Sonnet版本的使用。

方式2: 语聚AI(http://chat.jijyun.cn)的对话助手中。

相关文章:
多模态大模型Claude 3正式接入集简云与语聚!对标GPT-4且支持中文
自OpenAI发布GPT-4以来,引发了业务模式与应用使用的巨大变革,掀起了各大企业对于多模态大模型的研究热潮。3月初,AnthropicClaude在官网正式发布Claude 3系列多模态大模型,据了解,该模型在多个维度上超越了GPT-4&#…...
.NET后端返回File文件,及前端处理直接在浏览器下载
后端代码 [AllowAnonymous] public System.Web.Mvc.ActionResult ExportByteExcel(string datatab, string columnnames, string schemecode) { 返回excel。 string ReportName "ExcelTemplete" DateTime.Now.Ticks.ToString(); …...
如何压缩图片文件大小?教大家几种方法
当图片文件较大时,图片压缩可以有效的缩小图片kb,从而使图片储存起来更加方便,也可以解决上传时图片大小被限制的问题,那么我们有什么方法可以简单快速的将图片大小压缩呢?下面就来给大家分享几个如何修改照片大小kb的…...
Qt 如何搭建Lua的运行环境
一、Lua简介 Lua 是一种强大的、高效的、轻量级的、可嵌入的脚本语言。它支持过程(procedural)编程、面向对象编程、函数式编程以及数据描述。Lua 是动态类型的,运行速度快,支持自动内存管理,因此被广泛用于配置、脚本…...
产品推荐 - ALINX XILINX FPGA开发板 Artix-7 XC7A100T-2FGG484I
01开发板介绍 此款开发板采用核心板扩展板的模式,方便用户对核心板的二次开发利用。FPGA使用的是Xilinx公司的ARTIX-7系列的芯片,型号为XC7A100T-2FGG484I。在核心板使用了2片MICRON公司的MT41J256M16HA-125 DDR3芯片,组合成32bit的数据总线…...
Github 2024-03-16 开源项目日报Top10
根据Github Trendings的统计,今日(2024-03-16统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目5非开发语言项目2TypeScript项目1C++项目1Lua项目1Swift项目1《Hello 算法》:动画图解、一键运行的数据结构与算法教程 创建周期:4…...
【使用postman测试python接口】
打开python服务 设置postman如下,并发送: postman新建请求设置请求方式为post设置地址、raw、json方式、内容如下 结果: python如下: from flask import Flask, request, jsonifyapp Flask(__name__) # 实例化对象app.route…...
【C++ 】list 类
1. 标准库中的list类 list 类 的介绍: 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代 2. list与forward_list非常相似:最主要的不同在于forward_list是单链表 3. 与其他的序列式容器相比(a…...
Linux下的多线程编程:原理、工具及应用(2)
🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:Flower of Life—陽花 0:34━━━━━━️💟──────── 4:46 🔄 ◀️ ⏸ ▶️ ☰ …...
微信小程序-webview分享
项目背景 最近有个讨论区项目需要补充分享功能,希望可以支持在微信小程序进行分享,讨论区是基于react的h5项目,在小程序中是使用we-view进行承载的 可行性 目标是在打开web-view的页面进行分享,那就需要涉及h5和小程序的通讯问…...
webpack5零基础入门-8清空前次打包文件与处理图标字体资源
1.配置output中的clean属性为true output: {/**文件输出路径 绝对路径*///__dirname 表示当前文件的文件夹目录path: path.resolve(__dirname, dist),//所有文件的输出目录/**文件名 */filename: static/js/dist.js,//入口文件输出文件名clean: true,//在打包前将path整个目录内…...
中国首个基于区块链的分布式算力网络上线
随着美国人工智能公司OpenAI近期发布的Sora视频模型,全球对高性能算力的需求突破了历史新高。Sora的创新在于它能够以超长生成时间、多角度镜头捕捉,理解物理世界的能力,这不仅是技术的一大突破,更是对算力需求的一大挑战。在这样…...
cesiumlab中shp转3dtiles白模效果一
安装cesiumlab 如果没有安装cesiumlab,去官网下载安装一个即可 http://www.cesiumlab.com/cesiumlab.html 效果 步骤 1、准备shp面数据 2、打开cesiumlab软件转换 选择shp面数据 设置高度,如果shp面中有高度字段,可以用高度字段ÿ…...
照片生成数字人技术重塑虚拟主播生态
随着数字技术的飞速发展,虚拟主播已成为现代传媒领域的一股新势力。然而,传统虚拟主播形象制作周期长、成本高的问题,限制了其在多个场景下的广泛应用。美摄科技,作为业界领先的数字内容创新者,针对这一痛点࿰…...
前端和后端权限控制【笔记】
前端权限设置【笔记】 前言版权推荐前端权限设置需求效果实现资源 后端权限控制1.给所有前端请求都携带token2.添加拦截器3.配置到WebMvcConfiguration4.更多的权限验证 最后 前言 2024-3-15 18:27:26 以下内容源自《【笔记】》 仅供学习交流使用 版权 禁止其他平台发布时删…...
老电脑装什么系统流畅
对于一些老旧电脑来说,重装系统是提升电脑性能的最佳选择。那么,老电脑装什么系统流畅呢?推荐Windows 7系统,它对硬件的需求相对较低。配置较低的电脑运行Windows 7可以更好地利用系统资源,提高电脑的运行速度和响应能…...
厉害了!机器视觉在农业中的应用
机器视觉是一门涉及模式识别、神经生物学、计算机科学、人工智能、图像处理、心理物理学等诸多领域的交叉学科。主要是通过计算机对人类某些视觉方面的智能行为的模拟和再现,再处理并理解从客观事物的图像中提取到的信息,最终达到在实际检测和控制中应用的目的。近年来,随着…...
简述从浏览器发出请求到数据返回的全过程
下面是我结合经验概述的从浏览器发出请求到数据返回的全过程。 一、用户请求 1、用户在浏览器输入URL,或通过功能发起请求; 2、解析URL,提取协议(http,https等),IP,端口,域名,路径等信息&#x…...
MongoDB性能最佳实践:硬件和操作系统配置
欢迎阅读有关MongoDB性能最佳实践的系列博文。在往期文章中,我们已经讨论过查询模式和性能分析、事务和读/写关注等实现大规模性能的关键考虑因素。在本篇文章中,我们将讨论硬件和操作系统配置。 如果您在阿里云上部署MongoDB,那么阿里云会为…...
mysql查询条件包含IS NULL、IS NOT NULL、!=、like %* 、like %*%,不能使用索引查询,只能使用全表扫描,是真的吗???
不知道是啥原因也不知道啥时候, 江湖上流传着这么一个说法 mysql查询条件包含IS NULL、IS NOT NULL、!、like %* 、like %*%,不能使用索引查询,只能使用全表扫描。 刚入行时我也是这么认为的,还奉为真理! 但是时间工作中你会发现还是走索引…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
