当前位置: 首页 > news >正文

2、设计模式之单例模式详解(Singleton)

单例模式详解

一、什么是单例模式
单例模式是Java中最简单的设计模式之一。这种类型的设计模式属于创建者模式,它提供了一种访问对象的最佳方式。

    这种设计模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一对象的方式,可以直接访问,不需要实例化该类的对象。

二、单例模式的结构
单例类:只能创建一个实例的类

访问类:使用单例类的类

三、单例模式分类
饿汉式:类加载就会导致该单实例对象被创建

懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时被创建

四、单例模式优缺点
优点: 1、在内存里只有一个实例,减少了内存的开销,尤其是频繁的创建和销毁实例(比如管理学院首页页面缓存)。

2、避免对资源的多重占用(比如写文件操作)。

缺点:没有接口,不能继承,与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心外面怎么样来实例化。

主要解决:一个全局使用的类频繁地创建与销毁。

何时使用:当您想控制实例数目,节省系统资源的时候。

如何解决:判断系统是否已经有这个单例,如果有则返回,如果没有则创建。

关键代码:构造函数是私有的。

注意:

1、单例类只能有一个实例。

2、单例类必须自己创建自己的唯一实例。

3、单例类必须给所有其他对象提供这一实例。

五、创建单例模式
饿汉式
存在问题:

类加载时对象就被创建,一直在内存中,如果一直不适用,该对象仍在,会存在内存浪费问题

  1. 静态成员变量方式
public class HungryChinese {//私有构造方法private HungryChinese(){}//在该类中创建一个该类的对象供外界去使用private static HungryChinese hungryChinese = new HungryChinese();//提供一个公共的访问方式,让外界获取hungryChinese对象public static HungryChinese getInstance(){return hungryChinese;}
}
class HungryChineseTest{public static void main(String[] args) {//获取单例类的对象,因为对象私有,只能通过方法去获取HungryChinese instance = HungryChinese.getInstance();HungryChinese instance1 = HungryChinese.getInstance();//判断是否为同一个对象System.out.println(instance.equals(instance1));}
}

2.静态代码块方式


public class HungryChinese2 {//私有构造方法,为了不让外界创建该类的对象private HungryChinese2(){}//声明该类类型的变量private static HungryChinese2 hungryChinese2;//初始值为null//静态代码块中赋值static {hungryChinese2 = new HungryChinese2();}//对外提供的访问方式public static HungryChinese2 getInstance(){return hungryChinese2;}
}
class HungryChinese2Test{public static void main(String[] args) {HungryChinese2 instance = HungryChinese2.getInstance();HungryChinese2 instance1 = HungryChinese2.getInstance();System.out.println(instance.equals(instance1));}
}

懒汉式
1.线程不安全


public class LazyMan {//私有构造方法,为了不让外界创建该类的对象private LazyMan(){}//声明LazyMan类型的变量private static LazyMan instance;//只是声明了该类的对象,没有赋初始值//对外提供访问方式public static LazyMan getInstance(){//判断instance是否为null,如果为null,说明还没有创建LazyMan类的对象//如果没有,创建一个并返回;如果有,直接返回//线程不安全,多线程下会创建多个对象if (instance == null){instance = new LazyMan();}return instance;}
}
class LazyManTest{public static void main(String[] args) {LazyMan instance = LazyMan.getInstance();LazyMan instance1 = LazyMan.getInstance();System.out.println(instance.equals(instance1));}
}

2.线程安全(优化)

加上synchronized

同步方法


public class LazyMan2 {//私有构造方法,为了不让外界创建该类的对象private LazyMan2(){}//声明LazyMan类型的变量private static LazyMan2 instance;//只是声明了该类的对象,没有赋初始值//对外提供访问方式public static LazyMan2 getInstance(){//判断instance是否为null,如果为null,说明还没有创建LazyMan类的对象//如果没有,创建一个并返回;如果有,直接返回if (instance == null){//线程1等待,线程2获取到cpu执行权,也会进入到该判断里instance = new LazyMan2();}return instance;}
}
class LazyMan2Test{public static synchronized void main(String[] args) {LazyMan2 instance = LazyMan2.getInstance();LazyMan2 instance1 = LazyMan2.getInstance();System.out.println(instance.equals(instance1));}
}

优缺点说明:

  1. 解决了线程不安全问题
  2. 效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行
    同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,
    直接return就行了。方法进行同步效率太低
  3. 结论:在实际开发中,不推荐使用这种方式

同步代码块


public class LazyMan2 {//私有构造方法,为了不让外界创建该类的对象private LazyMan2(){}//声明LazyMan类型的变量private static LazyMan2 instance;//只是声明了该类的对象,没有赋初始值//对外提供访问方式public static LazyMan2 getInstance(){//判断instance是否为null,如果为null,说明还没有创建LazyMan类的对象//如果没有,创建一个并返回;如果有,直接返回if (instance == null){synchronized (LazyMan2.class){instance = new LazyMan2();}}return instance;}
}
class LazyMan2Test{public static void main(String[] args) {LazyMan2 instance = LazyMan2.getInstance();LazyMan2 instance1 = LazyMan2.getInstance();System.out.println(instance.equals(instance1));}
}

优缺点说明:

  1. 这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低,
    改为同步产生实例化的的代码块
  2. 但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一
    致,假如一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,
    另一个线程也通过了这个判断语句,这时便会产生多个实例
  3. 结论:在实际开发中,不能使用这种方式

3.双重检查锁模式
双重检查锁模式解决了单例、性能、线程安全问题,看似完美无缺,其实存在问题,在多线程情况下,可能会出现空指针问题问题在于JVM在实例化对象时会进行优化和指令重排序操作。解决空指针问题只需使用volatile关键字,volatile可以保证可见性和有序性。

public class LazyMan3 {private LazyMan3(){}private static volatile LazyMan3 instance;public static LazyMan3 getInstance(){//第一次判断,如果instance不为null,不需要抢占锁,直接返回对象if (instance == null){synchronized (LazyMan3.class){//第二次判断if (instance == null){instance = new LazyMan3();}}}return instance;}
}
class LazyMan3Test{public static void main(String[] args) {LazyMan3 instance = LazyMan3.getInstance();LazyMan3 instance1 = LazyMan3.getInstance();System.out.println(instance == instance1);}
}

优缺点说明:

  1. Double-Check概念是多线程开发中常使用到的,如代码中所示,我们进行了两
    次if (singleton == null)检查,这样就可以保证线程安全了。
  2. 这样,实例化代码只用执行一次,后面再次访问时,判断if (singleton == null),
    直接return实例化对象,也避免的反复进行方法同步.
  3. 线程安全;延迟加载;效率较高
  4. 结论:在实际开发中,推荐使用这种单例设计模式
  1. 静态内部类方式
    静态内部类模式中实例由内部类创建,由于JVM在加载外部类的过程中,是不会加载静态内部类的,只有内部类的方法/属性被调用时才会被加载,并初始化静态属性,静态属性由于被static修饰,保证只能被初始化一次,并且严格保证实例化顺序。
    静态内部类模式是一种优秀的单例模式。在没有任何锁的情况下,保证了多线程下的安全,并且没有任何性能影响和空间浪费。

public class LazyMan4 {private LazyMan4(){}//定义一个静态内部类private static class LazyMan4Holder{private static final LazyMan4 INSYANCE = new LazyMan4();}//对外访问方法public static LazyMan4 getInstance(){return LazyMan4Holder.INSYANCE;}
}
class LazyMan4Test{public static void main(String[] args) {LazyMan4 instance = LazyMan4.getInstance();LazyMan4 instance1 = LazyMan4.getInstance();System.out.println(instance == instance1);}
}

优缺点说明:

  1. 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
  2. 静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化
    时,调用getInstance方法,才会装载SingletonInstance类,从而完成Singleton的
    实例化。
  3. 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们
    保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
  4. 优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
  5. 结论:推荐使用

5.枚举方式
枚举方式属于饿汉式方式

枚举类实现单例模式是极力推荐的单例实现模式,因为枚举是线程安全的,并且只会装载一次,枚举类是所有单例类实现中唯一不会被破坏的单例模式。

public enum LazyMan5 {INSTANCE;
}
class LazyMan5Test{public static void main(String[] args) {LazyMan5 instance = LazyMan5.INSTANCE;LazyMan5 instance1 = LazyMan5.INSTANCE;System.out.println(instance == instance1);}
}

相关文章:

2、设计模式之单例模式详解(Singleton)

单例模式详解 一、什么是单例模式 单例模式是Java中最简单的设计模式之一。这种类型的设计模式属于创建者模式,它提供了一种访问对象的最佳方式。 这种设计模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个…...

【django framework】ModelSerializer+GenericAPIView,如何在提交前修改某些字段值

【django framework】ModelSerializerGenericAPIView,如何在提交前修改某些字段值 我们经常会遇到下面这种情况: 序列化器用的是ModelSerializer,写视图的时候继承的是generics.CreateAPIView。现在我想在正式提交到数据库(perform_create)之…...

2024年【P气瓶充装】模拟考试及P气瓶充装证考试

题库来源:安全生产模拟考试一点通公众号小程序 P气瓶充装模拟考试是安全生产模拟考试一点通生成的,P气瓶充装证模拟考试题库是根据P气瓶充装最新版教材汇编出P气瓶充装仿真模拟考试。2024年【P气瓶充装】模拟考试及P气瓶充装证考试 1、【多选题】《中华…...

<JavaEE> 数据链路层 -- 以太网协议、MTU限制、ARP协议

目录 以太网协议 什么是以太网? 以太网的帧格式 什么是MAC地址? MAC地址和IP地址的对比? MTU(最大传输单元)限制 什么是MTU限制? MTU对IP协议有什么影响? MTU对UDP协议有什么影响&…...

认识Testbench仿真激励

一、认识Testbench Bench有平台之意,所以Testbench就是测试平台的意思。 任何一个被测模块,都有输入和输出,此模块是否合格的判断依据,就是在满足输入要求的情况下,能否得到符合预期的输出。我们把被测模块称作UUT&…...

Postman请求API接口测试步骤和说明

Postman请求API接口测试步骤 本文测试的接口是国内数智客(www.shuzike.com)的API接口手机三要素验证,验证个人的姓名,身份证号码,手机号码是否一致。 1、设置接口的Headers参数。 Content-Type:applicati…...

这是二叉搜索树吗?

一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点, 其左子树中所有结点的键值小于该结点的键值;其右子树中所有结点的键值大于等于该结点的键值;其左右子树都是二叉搜索树。 所谓二叉搜索树的“镜像”&#xf…...

5.82 BCC工具之tcpdrop.py解读

一,工具简介 tcpdrop工具打印被内核丢弃的 TCP 数据包或段的详细信息,包括导致丢弃的内核堆栈跟踪。 当网络出现拥堵、资源不足或其他原因导致数据包被内核丢弃时,tcpdrop可以帮助开发者和网络管理员识别并定位问题。 该工具通过钩住内核中处理TCP数据包的相关函数,捕获…...

JavaScript 基础知识

一、初识 JavaScript 1、JS 初体验 JS 有3种书写位置&#xff0c;分别为行内、内部和外部。 示例&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"wid…...

【判断是否为回文数】

法一&#xff1a;用字符串形式判断&#xff08;依次对比前面和后面的数是否相等&#xff09; #include<stdio.h> #include<string.h> int main() {char st[100];scanf("%s",st);int flag1,nstrlen(st);for(int i0,jn-1;i<n,j>0;i,j--){if(st[i]!…...

【C++】string进一步介绍

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. 前言2. 迭代器2.1 反向迭代器2.2 const对象迭代器 3. Capacity3.1 size和length3.2 max_size3.3 capacity3.4 clear3.5 shrink_to_fit &#xff08;了解即可&#xff09;3.6 reserve3.7 resize 4. Element access4…...

思科设备下面主机访问公网经常时好时坏延迟大丢包不稳定

环境: 思科防火墙ASA5555 Cisco Adaptive Security Appliance Software Version 9.4(2)6 Device Manager Version 7.5(2)153 内外为DMZ区域 思科交换机(C3560E-UNIVERSALK9-M), Version 12.2(55)SE5 主机 centos 7 问题描述: 思科设备下面主机访问公网经常时好时坏不稳定…...

nuxtjs 如何通过ecosystem.config.js配置pm2?

在 Nuxt.js 项目中&#xff0c;您可以通过 ecosystem.config.js 文件来配置 PM2&#xff0c;以便使用 PM2 来管理 Nuxt.js 应用的进程。ecosystem.config.js 是一个特殊的配置文件&#xff0c;它允许您定义应用的各种属性&#xff0c;如脚本路径、环境变量、日志设置等。 下面…...

个人博客系列-后端项目-用户注册功能(7)

介绍 用户注册API的主要流程&#xff1a;1.前端用户提交用户名&#xff0c;密码 2. 序列化器校验用户名&#xff0c;密码是否合法。3.存入数据库。4.签发token 创建序列化器 from rest_framework import serializers from rest_framework_simplejwt.serializers import Toke…...

vue项目因内存溢出启动报错

前端能正常启动&#xff0c;但只要一改动就报错启动出错。 解决办法&#xff1a; 安装依赖 npm install cross-env increase-memory-limit 然后再做两件事&#xff1a;在node 在package.json 里的 script 里进行配置 LIMIT是你想分配的内存大小&#xff0c;这里的8192单位…...

UI 学习 二 可访问性 模式

教程&#xff1a;Accessibility – Material Design 3 一 颜色对比 颜色和对比度可以用来帮助用户看到和理解应用程序的内容&#xff0c;与正确的元素交互&#xff0c;并理解操作。 颜色可以帮助传达情绪、语气和关键信息。可以选择主色、辅助色和强调色来支持可用性。元素之…...

Spring学习

Maven 的配置文件是一个强约定的XML格式文件&#xff0c;它的文件名一定是pom.xml。 1、POM (Project Object Model) 一个 Java 项目所有的配置都放置在 POM 文件中&#xff0c;大概有如下的行为&#xff1a; 定义项目的类型、名字管理依赖关系定制插件的 1.maven坐标 <…...

鸿蒙开发-UI-动画-组件内转场动画

鸿蒙开发-UI-组件3 鸿蒙开发-UI-气泡/菜单 鸿蒙开发-UI-页面路由 鸿蒙开发-UI-组件导航-Navigation 鸿蒙开发-UI-组件导航-Tabs 鸿蒙开发-UI-图形-图片 鸿蒙开发-UI-图形-绘制几何图形 鸿蒙开发-UI-图形-绘制自定义图形 鸿蒙开发-UI-图形-页面内动画 文章目录 前言 一、基本概…...

Leet code 179 最大数

解题思路 贪心算法 贪心算法就是走一步看一步 每一步都取当前位置的最优解 这题我们该如何贪呢&#xff1f; 我们先把int数组转换为string数组 以示例2为例 3 30 34 5 9 排序哪个在前哪个在后&#xff1f; 3 30 &#xff08;330&#xff09;> 30 3 &#xff08;30…...

swagger踩坑之请求类不显示具体字段

swagger踩坑之请求类不显示具体字段 省流&#xff1a;枚举字段需要加上ApiModelProperty注解 过程复现&#xff1a; TestEnum 枚举不加注解&#xff0c;swagger的UI类不显示详细字段 Data Accessors(chain true) ApiModel(value "test对象", description &quo…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...