当前位置: 首页 > news >正文

【AI】用iOS的ML(机器学习)创建自己的AI App

用iOS的ML(机器学习)创建自己的AI App

目录

  • 用iOS的ML(机器学习)创建自己的AI App
    • 机器学习如同迭代过程
    • CoreML 的使用方法?
    • 软件要求
    • 硬件
    • 开始吧!!
      • 构建管道:
      • 设计和训练网络
      • Keras 转 CoreML
      • 将模型集成到 Xcode 中
    • 结论

推荐超级课程:

  • Docker快速入门到精通
  • Kubernetes入门到大师通关课
  • AWS云服务快速入门实战

在这里插入图片描述

在机器学习中,一切都始于模型,这是进行预测或识别的系统。教计算机学习涉及使用训练数据的机器学习算法进行学习。从训练中生成的输出通常称为机器学习模型。有不同类型的机器学习模型来解决同一个问题(例如对象识别),但使用不同的算法。神经网络, 树集成, 支持向量机(SVM)是其中一些机器学习算法。

机器学习如同迭代过程

首先,我们尝试使用公共模型,但为了带来独特的市场价值和优势,我们希望我们的模型能胜过其他模型。我们在寻找的是所谓的ML反馈循环。谷歌在其ML功能中遵循以下模式:

  • 获取初始数据(一次性)
  • — — — — —
  • 对数据进行标记
  • 训练模型
  • 测试模型
  • 将模型投入生产运行
  • 获取新数据(并重复)

现在,对于一个移动应用程序,流程看起来像是:

在上图中,移动应用程序似乎使用了由ML创建的模型,但是它是如何工作的?是的,这里就是Core ML发挥作用的地方。

CoreML 的使用方法?

Core ML 是苹果的一种新的机器学习框架。它将机器学习模型带到苹果设备上,并让开发者能够轻松利用机器学习。我们可以使用苹果准备的十几种模型,或者从流行的ML框架(比如Keras,Caffe 或 scikit-learn)中转换开源模型。

使用 CoreML 创建IOS应用程序的工作流程如下:

1- 您需要使用如Caffe、turi、Keras等ML框架创建一个数据模型。

2- 安装名为Core ML Tools的Python框架,将数据模型转换为Core ML格式。此转换的结果将是一个带有mlmodel扩展的文件。

3- 就是这样,您可以使用Core ML Tools创建的模型,并将其用于您的移动应用程序。

软件要求

为了训练模型,我们需要一个ML框架。最流行的是由Google开发的Tensorflow。它受到社区最好的支持,并拥有大量的教程和开发者的关注。然而,当您深入了解时,您可能会最终发现自己在Github 问题页面或堆栈溢出上处理一些数学问题或未记录的代码。与Web应用程序或移动开发相比,ML仍处于婴儿阶段,作为开发者,您需要准备好面对这些。建议您留出额外的时间来探索ML的神秘之处。开始使用高级库如Keras或许更容易。您可以在文章结尾处查看一些训练教程的链接。

Tensorflow 和 Keras 是最常见的ML库之一

硬件

许多人说我们需要一个GPU来训练模型。对于需要高精度或进行一些网络架构调整的项目来说这是正确的。如果我们需要一个包含10个类别的图像分类器,那么我们可以利用迁移学习,在标准CPU上对我们的模型进行10分钟的微调。然而,对于真实的生产应用,我们通常需要GPU的性能。我们已经尝试了几家云服务提供商,亚马逊AWS的g2.2xlarge实例是一个不错的选择。

开始吧!!

到目前为止,您已经知道了使用机器学习创建IOS应用所需的必要工具,那就开始吧!

在这里插入图片描述

构建管道:

要使用Core ML工具,第一步是在您的Mac上安装Python。首先,下载Anaconda(选择Python 2.7版本)。Anaconda是一种在Mac上运行Python而不会出现问题的超级简单方式。安装Anaconda后,请转到终端并输入以下命令:

conda install python=2.7.13conda update python

接下来是创建一个虚拟环境。在虚拟环境中,您可以使用不同版本的Python或包来编写程序。要创建一个新的虚拟环境,请输入以下命令。

conda create --name handwriting当终端提示您时,pr

相关文章:

【AI】用iOS的ML(机器学习)创建自己的AI App

用iOS的ML(机器学习)创建自己的AI App 目录 用iOS的ML(机器学习)创建自己的AI App机器学习如同迭代过程CoreML 的使用方法?软件要求硬件开始吧!!构建管道:设计和训练网络Keras 转 CoreML将模型集成到 Xcode 中结论推荐超级课程: Docker快速入门到精通Kubernetes入门到…...

远程调用初体验笔记

远程调用初体验笔记 微服务架构通常将系统拆分成多个独立的服务单元,每个服务单元都专注于实现特定的业务功能。当一个服务需要使用另一个服务提供的功能时,就可以通过远程调用来实现。 使用步骤 1.步骤 Spring给我们提供了一个RestTemplate工具&#…...

反无人机电子护栏:原理、算法及简单实现

随着无人机技术的快速发展,其在航拍、农业、物流等领域的应用日益广泛。然而,无人机的不规范使用也带来了安全隐患,如侵犯隐私、干扰航空秩序等。为了有效管理无人机,反无人机电子护栏技术应运而生。 目录 一、反无人机电子护栏…...

Java项目利用Redisson实现真正生产可用高并发秒杀功能 支持分布式高并发秒杀

Java中的高并发秒杀场景下我们可以使用redisson来实现高并发秒杀功能, 以下就是一个可用于生产环境的高并发秒杀示例代码: pom依赖 <!-- https://mavenlibs.com/maven/dependency/org.redisson/redisson --><dependency><groupId>org.redisson</groupId&…...

0104行列式的性质-行列式-线性代数

记 D ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ D\begin{vmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\cdots&\cdots&&\cdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\en…...

k8s HPA 自动伸缩机制 (配置,资源限制,)

目录 一、概念 核心概念 工作原理 HPA 的配置关键参数 关键组件 使用场景 注意事项 如何确保程序稳定和服务连续 二、metrics-server 部署 metrics-server 准备 metrics-server 镜像: 使用 Helm 安装 metrics-server: 配置 metrics-server: 安装 metrics-server: …...

vulhub中GIT-SHELL 沙盒绕过漏洞复现(CVE-2017-8386)

GIT-SHELL 沙盒绕过&#xff08;CVE-2017-8386&#xff09;导致任意文件读取、可能的任意命令执行漏洞。 测试环境 为了不和docker母机的ssh端口冲突&#xff0c;将容器的ssh端口设置成3322。本目录下我生成了一个id_rsa&#xff0c;这是ssh的私钥&#xff0c;连接的时候请指…...

SpringBoot+vue3打造企业级一体化SaaS系统

SpringBootvue3打造企业级一体化SaaS系统 简介&#xff1a;    全面提升前后端技术水平&#xff0c;独立完成全栈项目开发能力&#xff0c;快速进击全栈工程师&#xff0c;最终在面试中脱颖而出。整合后端主流技术&#xff08;Spring Boot、物理数据库隔离、加载动态权限、多…...

探讨TCP的可靠性以及三次握手的奥秘

&#x1f31f; 欢迎来到 我的博客&#xff01; &#x1f308; &#x1f4a1; 探索未知, 分享知识 !&#x1f4ab; 本文目录 1. TCP的可靠性机制1.2可靠性的基础上,尽可能得提高效率 2. TCP三次握手过程3. 为何不是四次握手&#xff1f; 在互联网的复杂世界中&#xff0c;TCP&am…...

openai常见的两个错误:BadRequestError和OpenAIError

错误1:openai.OpenAIError: The api_key client option must be set either by passing api_key..... 在通过openai创建客户端必须要设置api key&#xff0c;如果你事先已经在本机的环境中设置未起效可以手动设置&#xff0c;注意手动设置时不要用下面的形式 import openai f…...

2核4g服务器够用吗?

2核4G服务器够用吗&#xff1f;够用。阿腾云以2核4G5M服务器搭建网站为例&#xff0c;5M带宽下载速度峰值可达640KB/秒&#xff0c;阿腾云以搭建网站为例&#xff0c;假设优化后平均大小为60KB&#xff0c;则5M带宽可支撑10个用户同时在1秒内打开网站&#xff0c;并发数为10&am…...

数据仓库数据分层详解

数据仓库中的数据分层是一种重要的数据组织方式&#xff0c;其目的是为了在管理数据时能够对数据有一个更加清晰的掌控。以下是数据仓库中的数据分层详解&#xff1a; 原始数据层&#xff08;Raw Data Layer&#xff09;&#xff1a;这是数仓中最底层的层级&#xff0c;用于存…...

unity内存优化之AB包篇(微信小游戏)

1.搭建资源服务器使用(HFS软件(https://www.pianshen.com/article/54621708008/)) using System.Collections; using System.Collections.Generic; using UnityEngine;using System;public class Singleton<T> where T : class, new() {private static readonly Lazy<…...

白话模电:3.三极管(考研面试与笔试常考问题)

一、三极管的简单判断 1.判断三极 1)给了图 左边是b,有箭头是e,剩下是c 2)给了电位 b:中间值&#xff0c;e:较近值(离中间值)&#xff0c;c:较远值(离中间值) 2.判断流向 bc同向(共同流向“|”或共同流离“|”)&#xff0c;e与bc反向 3.判断材料 4.判断类型 5.判断能否构…...

LeetCode 395. 至少有K个重复字符的最长子串

解题思路 一道滑动窗口题型&#xff0c;不过滑动窗口的长度是不同种类元素的个数。 这里需要定义两个变量 cnt,overk。overk表示的是满足大于k的字符数, cnt表示的是该窗口中不同元素的个数且cnt>1&&cnt<26。 相关代码 class Solution {public int longestSub…...

C#重新认识笔记_ FixUpdate + Update

C#重新认识笔记_ FixUpdate Update Update: 刷新频率不一致,非物理对象的移动&#xff0c;简单的刷新可用&#xff0c; FixedUpdate: 刷新频率一致,按照固定频率刷新&#xff0c;一般调用FixedUpdate之后&#xff0c;会立即进入必要的物理计算中,因此&#xff0c;任何影响刚…...

Django 解决新建表删除后无法重新创建等问题

Django 解决新建表删除后无法重新创建等问题 问题发生描述处理办法首先删除了app对应目录migrations下除 __init__.py以外的所有文件:然后&#xff0c;删除migrations中关于你的app的同步数据数据库记录最后&#xff0c;重新执行迁移插入 问题发生描述 Django创建的表&#xf…...

Qt教程 — 3.3 深入了解Qt 控件:Input Widgets部件(2)

目录 1 Input Widgets简介 2 如何使用Input Widgets部件 2.1 QSpinBox组件-窗口背景不透明调节器 2.2 DoubleSpinBox 组件-来调节程序窗口的整体大小 2.3 QTimeEdit、QDateEdit、QDateTimeEdit组件-编辑日期和时间的小部件 Input Widgets部件部件较多&#xff0c;将分为三…...

数据分析-Pandas的直接用Matplotlib绘图

数据分析-Pandas的直接用Matplotlib绘图 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表…...

Jmeter---分布式

分布式&#xff1a;多台机协作&#xff0c;以集群的方式完成测试任务&#xff0c;可以提高测试效率。 分布式架构&#xff1a;控制机&#xff08;分发任务&#xff09;与多台执行机&#xff08;执行任务&#xff09; 环境搭建&#xff1a; 不同的测试机上安装 Jmeter 配置基…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...