当前位置: 首页 > news >正文

聊聊Python都能做些什么

文章目录

  • 一、Python简介
  • 二、Python都能做些什么
    • 1. Web开发
    • 2. 数据分析和人工智能
    • 3. 自动化运维和测试
    • 4. 网络爬虫
    • 5. 金融科技
  • 三、Python开源库都有哪些
    • 1. Web开发
    • 2. 数据分析和科学计算
    • 3. 机器学习和深度学习
    • 4. 网络爬虫
    • 5. 自动化和测试
    • 6. 其他常用库
  • 四、相关链接

一、Python简介

Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它最初由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。Python的设计哲学强调代码的可读性,允许开发者用少量代码表达想法,同时支持多种编程范式,包括面向过程、面向对象和函数式编程。

Python的主要特点包括:

  1. 易于学习:Python的语法清晰,代码简洁易懂,这使得Python成为初学者和专业开发者的首选语言。
  2. 免费和开源:Python的源代码是公开的,任何人都可以查看和修改。此外,Python有着庞大的社区和丰富的第三方库,可以轻松地实现各种功能。
  3. 跨平台性:Python可以在多种操作系统上运行,包括Windows、Linux和macOS等。
  4. 支持多种编程范式:Python支持面向过程、面向对象和函数式编程,使得开发者可以根据需要选择最适合的编程方式。
  5. 强大的扩展性:Python可以使用C、C++或Java等语言编写扩展模块,这使得Python可以与这些语言进行交互,从而利用它们的特性。
  6. 丰富的应用领域:Python在Web开发、数据分析、人工智能、科学计算、网络编程、自动化运维等领域都有广泛的应用。例如,使用Python可以方便地处理和分析大量数据,也可以构建复杂的机器学习模型。

Python是一种功能强大、易于学习和使用的编程语言,适用于各种应用领域。无论是初学者还是经验丰富的开发者,都可以通过Python实现自己的想法并创造出有趣的应用。

二、Python都能做些什么

Python在多个应用场景中都有广泛的应用,并且常常以简洁、高效的方式解决复杂问题。以下是一些具体的应用场景以及对应的案例代码:

1. Web开发

使用Flask框架构建简单的Web应用

from flask import Flask, render_template, requestapp = Flask(__name__)@app.route('/')
def hello_world():return render_template('index.html')@app.route('/submit', methods=['POST'])
def submit_data():name = request.form['name']return f"Hello, {name}!"if __name__ == '__main__':app.run(debug=True)

在这个例子中,我们创建了一个简单的Flask应用,其中包含了两个路由:一个是根路由/,它返回一个HTML页面;另一个是/submit,它接受POST请求并返回包含表单数据的响应。

2. 数据分析和人工智能

使用Pandas处理数据

import pandas as pd# 读取CSV文件
data = pd.read_csv('data.csv')# 显示数据的前5行
print(data.head())# 对数据进行描述性统计
print(data.describe())# 根据条件筛选数据
filtered_data = data[data['column_name'] > 10]# 保存到新的CSV文件
filtered_data.to_csv('filtered_data.csv', index=False)

使用TensorFlow构建简单的神经网络

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense# 构建模型
model = Sequential([Dense(128, activation='relu', input_shape=(784,)),Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 假设我们有一些训练数据 x_train 和 y_train
# model.fit(x_train, y_train, epochs=5)# 在此处省略了数据的加载和预处理,因为那通常涉及更多的代码。

3. 自动化运维和测试

使用Python进行自动化文件备份

import shutil
import timedef backup_files(src, dst):timestamp = time.strftime("%Y%m%d-%H%M%S")backup_dir = f"{dst}/backup-{timestamp}"shutil.copytree(src, backup_dir)print(f"Files backed up to {backup_dir}")# 使用函数备份文件
backup_files('/path/to/source', '/path/to/destination')

4. 网络爬虫

使用Scrapy爬取网页数据

首先,需要安装Scrapy并创建一个Scrapy项目,然后编写spider来爬取数据。以下是spider的一个简单示例:

import scrapyclass MySpider(scrapy.Spider):name = 'example_spider'start_urls = ['http://example.com']def parse(self, response):for title in response.css('h1.title'):yield {'title': title.get_text()}

5. 金融科技

使用Pandas和Statsmodels进行时间序列分析

import pandas as pd
import statsmodels.api as sm# 读取股票数据
data = pd.read_csv('stock_data.csv', index_col='Date', parse_dates=True)# 计算收益率
returns = data['Close'].pct_change()# 拟合ARIMA模型
model = sm.tsa.ARIMA(returns, order=(5, 1, 0))
results = model.fit()# 预测未来值
forecast = results.predict(start=len(returns), end=len(returns)+10)
print(forecast)

三、Python开源库都有哪些

Python拥有大量的开源库,这些库为开发者提供了丰富的功能和工具,使得Python在各个领域都能发挥出强大的作用。

1. Web开发

  • Django:一个高级Web框架,它鼓励快速开发和干净、务实的设计。
  • Flask:一个轻量级的Web应用框架,用于构建Web应用程序的微型框架。
  • Bottle:一个小型的Python Web框架,提供路由、模板、会话等功能。

2. 数据分析和科学计算

  • NumPy:用于处理大型多维数组和矩阵的库,包含大量的数学函数来操作这些数组。
  • Pandas:提供高性能、易于使用的数据结构和数据分析工具。
  • SciPy:基于NumPy构建的用于数学、科学和工程的开源软件库。
  • Matplotlib:一个绘图库,可以生成各种静态、动态、交互式的可视化图形。
  • Seaborn:基于matplotlib的数据可视化库,提供高级界面以绘制美观和有意义的统计图形。

3. 机器学习和深度学习

  • TensorFlow:一个开源机器学习库,用于数据流图计算,支持分布式训练。
  • PyTorch:一个用于深度学习的开源库,提供了强大的GPU加速张量计算和自动微分功能。
  • Scikit-learn:一个简单高效的数据挖掘和数据分析工具,提供简单易用的接口。

4. 网络爬虫

  • Scrapy:一个快速、高级的Web爬虫框架,用于抓取网站并从页面中提取结构化数据。
  • BeautifulSoup:一个可以从HTML或XML文件中提取数据的Python库。
  • Requests:一个优雅且简单的HTTP客户端库,用于发送所有类型的HTTP请求。

5. 自动化和测试

  • Selenium:一个用于自动化Web浏览器交互的开源工具,支持多种浏览器。
  • Pytest:一个成熟的全功能Python测试框架,易于上手且可扩展。
  • Unittest:Python标准库中的一个单元测试框架。

6. 其他常用库

  • Jinja2:一个现代且设计师友好的模板引擎,用于Python。
  • Pillow(PIL的分支):一个强大的图像处理库,支持多种文件格式。
  • SQLAlchemy:一个流行的SQL工具包和对象关系映射(ORM)系统,为应用程序开发人员提供了一套全面的企业级持久性模型。

这只是Python众多开源库中的一小部分,实际上Python社区拥有海量的开源项目,覆盖了编程的方方面面。这些库不仅功能强大,而且大多数都有详细的文档和活跃的社区支持,使得开发者能够轻松地使用它们来构建各种应用。

四、相关链接

  1. Python下载安装中心
  2. Python官网
  3. Python软件下载
  4. 「Python系列」Python简介及案例
  5. 「Python系列」Python基础语法/数据类型
  6. 「Python系列」Python解释器
  7. 「Python系列」Python运算符
  8. 「Python系列」Python数据结构
  9. 「Python系列」Python元组
  10. 「Python系列」Python集合
  11. 「Python系列」Python列表

相关文章:

聊聊Python都能做些什么

文章目录 一、Python简介二、Python都能做些什么1. Web开发2. 数据分析和人工智能3. 自动化运维和测试4. 网络爬虫5. 金融科技 三、Python开源库都有哪些1. Web开发2. 数据分析和科学计算3. 机器学习和深度学习4. 网络爬虫5. 自动化和测试6. 其他常用库 四、相关链接 一、Pytho…...

JavaWeb06-MVC和三层架构

目录 一、MVC模式 1.概述 2.好处 二、三层架构 1.概述 三、MVC与三层架构 四、练习 一、MVC模式 1.概述 MVC是一种分层开发的模式,其中 M:Model,业务模型,处理业务 V: View,视图,界面展…...

MySQL数据库实现增删改查基础操作

准备工作 安装mysql8.0 (安装时一定要记住用户名和密码)安装数据库可视化视图工具Navicat 请注意⚠️⚠️⚠️⚠️ a. 编程类所有软件不要安装在中文目录下 b. Navicat破解版下载安装教程:(由于文章审核提示版权问题,链接不方便给出&#xff…...

PCM和I2S区别

I2S和PCM接口都是数字音频接口,而所见的蓝牙到cpu以及codec的音频接口都是用PCM接口,是不是两个接口有各自不同的应用呢?先来看下概念。 PCM(PCM-clock、PCM-sync、PCM-in、PCM-out)脉冲编码调制,模拟语音信…...

大模型笔记:吴恩达 ChatGPT Prompt Engineering for Developers(1) prompt的基本原则和策略

1 intro 基础大模型 VS 用指令tune 过的大模型 基础大模型 只会对prompt的文本进行续写 所以当你向模型发问的时候,它往往会像复读机一样续写几个问题这是因为在它见过的语料库文本(通常大多来自互联网)中,通常会连续列举出N个问…...

设计模式 — — 单例模式

一、是什么 单例模式只会在全局作用域下创建一次实例对象,让所有需要调用的地方都共享这一单例对象 二、实现 // 单例构造函数 function CreateSingleton (name) {this.name name;this.getName(); };// 获取实例的名字 CreateSingleton.prototype.getName func…...

C++:菱形继承与虚继承

看下面这个示例代码 class A{ public: int num10; A(){cout<<"A构造"<<endl;} virtual void fun(){cout<<"A虚函数"<<endl;} };class B:public A{ public: B(){cout<<"B构造"<<endl;} void fun(){cout<…...

贡献法:USACO 2021 December Contest Bronze:孤独的照片

Farmer John 最近购入了 N 头新的奶牛&#xff0c;每头奶牛的品种是更赛牛&#xff08;Guernsey&#xff09;或荷斯坦牛&#xff08;Holstein&#xff09;之一。 奶牛目前排成一排&#xff0c;Farmer John 想要为每个连续不少于三头奶牛的序列拍摄一张照片。 然而&#xff0c;他…...

Java实现简单的通讯录

每日一言 泪眼问花花不语&#xff0c;乱红飞过秋千去。 —欧阳修- 简单的通讯录实现&#xff0c;跟写Java实现图书管理系统差不多&#xff0c;用到的知识也差不多&#xff0c;就当个小练习&#xff0c;练习一下写Java程序的手感。 Java实现图书管理系统 关于通讯录的代码都写…...

服务器数据恢复—raid5热备盘上线同步数据失败的如何恢复数据

服务器数据恢复环境&故障&分析&#xff1a; 一台存储上有一组由多块硬盘组建的raid5阵列&#xff0c;该raid5阵列中的一块硬盘掉线&#xff0c;热备盘自动上线同步数据的过程中&#xff0c;raid阵列中又有一块硬盘掉线&#xff0c;热备盘的数据同步被中断&#xff0c;r…...

探索C语言中的循环结构

循环结构是程序设计中一种重要的控制结构&#xff0c;它允许程序重复执行特定的代码块&#xff0c;直到满足某个条件为止。在C语言中&#xff0c;循环结构有多种形式&#xff0c;如for循环、while循环和do-while循环。本文将介绍C语言中的循环结构&#xff0c;并讨论它们的用法…...

数学建模-估计出租车的总数

文章目录 1、随机抽取的号码在总体的排序 1、随机抽取的号码在总体的排序 10个号码从小到大重新排列 [ x 0 , x ] [x_0, x] [x0​,x] 区间内全部整数值 ~ 总体 x 1 , x 2 , … , x 10 总体的一个样本 x_1, x_2, … , x_{10} ~ 总体的一个样本 x1​,x2​,…,x10​ 总体的一个样…...

设计模式在芯片验证中的应用——装饰器

一、装饰器模式 装饰器模式(Decorator)是一种结构化软件设计模式&#xff0c;它提供了一种通过向类对象添加行为来修改类对象的方法&#xff0c;而不会影响同一类的其它对象行为。该模式允许在不修改抽象类的情况下添加类功能。它从本质上允许基类代码对不可预见的修改具有前瞻…...

Python 查找并高亮PDF中的指定文本

在处理大量PDF文档时&#xff0c;有时我们需要快速找到特定的文本信息。本文将提供以下三个Python示例来帮助你在PDF文件中快速查找并高亮指定的文本。 查找并高亮PDF中所有的指定文本查找并高亮PDF某个区域内的指定文本使用正则表达式搜索指定文本并高亮 本文将用到国产第三方…...

LEETCODE LCS 03. 主题空间

题目描述如上&#xff0c;这个题主要运用了DFS的思想&#xff0c;同时走过的路径标记为6&#xff0c;即可在后续的遍历中过滤掉重复的元素&#xff0c;其他则类似边界条件的判断和题目条件的判断&#xff0c;求最大值&#xff0c;只需要一次遍历中累加对比每一次得即可。 模板&…...

【Spring Boot 源码学习】深入应用上下文初始化器实现

《Spring Boot 源码学习系列》 深入应用上下文初始化器实现 一、引言二、往期内容三、主要内容3.1 spring-boot 子模块中内置的实现类3.1.1 ConfigurationWarningsApplicationContextInitializer3.1.2 ContextIdApplicationContextInitializer3.1.3 DelegatingApplicationConte…...

【Docker】一文趣谈Docker

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 …...

代码随想录day19(2)二叉树:二叉树的最大深度(leetcode104)

题目要求&#xff1a;求出二叉树的最大深度 思路&#xff1a;首先要区分二叉树的高度与深度。二叉树的高度是任一结点到叶子结点的距离&#xff0c;而二叉树的深度指的是任一节点到根节点的距离&#xff08;从1开始&#xff09;。所以求高度使用后序遍历&#xff08;从下往上&…...

Lua中文语言编程源码-第五节,更改lcorolib.c协程库函数, 使Lua加载中文库关键词(与所有的基础库相关)

源码已经更新在CSDN的码库里&#xff1a; git clone https://gitcode.com/funsion/CLua.git 在src文件夹下的lcorolib.c协程库函数&#xff0c;Coroutine Library&#xff1a;表明这个C源文件实现了Lua的协程库&#xff08;Coroutine Library&#xff09;&#xff0c;即提供了…...

Docker学习之数据管理(超详解析)

Docker存储资源类型&#xff1a; 用户在使用 Docker 的过程中&#xff0c;势必需要查看容器内应用产生的数据&#xff0c;或者需要将容器内数据进行备份&#xff0c;甚至多个容器之间进行数据共享&#xff0c;这必然会涉及到容器的数据管理&#xff1a; &#xff08;1&#xff…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

32单片机——基本定时器

STM32F103有众多的定时器&#xff0c;其中包括2个基本定时器&#xff08;TIM6和TIM7&#xff09;、4个通用定时器&#xff08;TIM2~TIM5&#xff09;、2个高级控制定时器&#xff08;TIM1和TIM8&#xff09;&#xff0c;这些定时器彼此完全独立&#xff0c;不共享任何资源 1、定…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...