当前位置: 首页 > news >正文

深度学习pytorch——Tensor维度变换(持续更新)

view()打平函数

需要注意的是打平之后的tensor是需要有物理意义的,根据需要进行打平,并且打平后总体的大小是不发生改变的。

并且一定要谨记打平会导致维度的丢失,造成数据污染,如果想要恢复到原来的数据形式,是需要靠人为记忆的。

现在给出一个tensor——a.shape=torch.Size([4, 1, 28, 28]),打平a.view(4,1*28*28),此时a.view(4,1*28*28).shape=torch.Size([4, 784])。

当然也可以向高维度:b.shape=torch.Size([4, 784]),打平b.view(4,28,28,1),此时b.view(4,28,28,1).shape=torch.Size([4, 28, 28, 1])

unsqueeze()维度增加

当使用unsqueeze()方法时,此时概念会发生改变,会为数据增加一个组别,这个组别的含义由自己定义。

语法:unsqueeze(index) 如果index为正,则在索引之前加入;如果index为负,则在索引之后加入

代码演示:

# a.shape : torch.Size([4, 1, 28, 28])# index 为正
print(a.unsqueeze(0).shape)
# torch.Size([1, 4, 1, 28, 28])
print(a.unsqueeze(3).shape)
# torch.Size([4, 1, 28, 1, 28])# index 为负
print(a.unsqueeze(-1).shape)
# torch.Size([4, 1, 28, 28, 1])
print(a.unsqueeze(-2).shape)
# torch.Size([4, 1, 28, 1, 28])# 注意不要超出索引范围,否则会报错
# 增加组别具体在数据上的表现
b = torch.tensor([1.2,2.3]) # 此时是一个dim为1,size为2的tensor
print(b.unsqueeze(-1))  # 是在最里层添加了一个维度
# tensor([[1.2000],
#         [2.3000]])
print(b.unsqueeze(0))   # 是在最外层添加了一个维度
# tensor([[1.2000, 2.3000]])

来个小例子:

# for example
# bias相当于给每个channel上的像素增加了一个偏置
b = torch.rand(32)
f = torch.rand(4,32,14,14)
# 现在我们要实现b+f,由于二者维度不同,不能操作(每个维度对应的size也要相同)
b = b.unsqueeze(1)       # torch.Size([32, 1])
print(b.shape)
b = b.unsqueeze(2)       # torch.Size([32, 1, 1])
print(b.shape)
b = b.unsqueeze(0)       # torch.Size([1, 32, 1, 1])
print(b.shape)

squeeze()维度减少

语法:squeeze(index) 如果index不填写,就是将所有size都为1的都去除;index就是去除对应的维度,但是只有size=1的才能被去除。

代码演示:

# b.shape = torch.Size([1, 32, 1, 1])
print(b.squeeze().shape)    # torch.Size([32]) 如果不添加任何参数,就是将所有size=1的都去除
print(b.squeeze(0).shape)   # torch.Size([32, 1, 1])
print(b.squeeze(1).shape)   # torch.Size([1, 32, 1, 1]) 只有size=1的才能被去除

expand()

条件:维度一致,并且只有size=1的才能扩张。

使用蓝色线画的数据必须保持一致;如果参数为-1,则意味着size保持不变。

repeat()

repeat()复制内存数据,括号内参数是copy次数。

代码演示:

print(b.repeat(4,32,1,1).shape) # torch.Size([4, 1024, 1, 1])

转置

1、.t 矩阵转置,只适用于矩阵

2、transpose(dim1,dim2)转置

语法:交换dim1,dim2两个维度。注意transpose()方法会将数据变得不连续,所以通常需要借助于

contiguous()方法,用于将数据变得连续。

数据维度顺序必须和存储顺序一致。(说实话这一句我不太懂,然后我就去问了一下chatgpt)答案:

"数据维度顺序必须和存储顺序一致"是指在使用PyTorch进行数据处理和存储时,数据的维度顺序必须与存储的顺序一致。如果数据的维度顺序与存储的顺序不一致,可能会导致数据处理错误或结果不准确。

例如,如果使用PyTorch创建一个张量(tensor)并在存储时按默认的规则进行存储,即按行优先顺序存储,那么在对该张量进行操作时,需要按照相同的维度顺序进行操作,否则可能会导致错误。

总之,这句话的意思是在PyTorch中,需要保证数据的维度顺序和存储顺序一致,以确保数据处理和存储的正确性。

代码演示:

# a.shape=torch.Size([2, 3, 5, 5])
a1 = a.transpose(1,3).contiguous().view(2,3*5*5).view(2,3,5,5)
a2 = a.transpose(1,3).contiguous().view(2,3*5*5).view(2,5,5,3).transpose(1,3)
print(a1.shape,a2.shape)            # torch.Size([2, 3, 5, 5]) torch.Size([2, 3, 5, 5])
print(torch.all(torch.eq(a,a1)))    # tensor(False)
print(torch.all(torch.eq(a,a2)))    # tensor(True)

补充:其中all()方法是用来确定所有内容一致,eq()方法是用来比较数据一致。

说实话这个我也不是很懂,但是我去做了一下实验,将torch.eq(a,a2)和torch.eq(a,a1)都打印了出来,发现这是一个shape为torch.Size([2, 3, 5, 5])的张量,并且里面的数据都是ture或者false,然后我就明白了,原来eq()是用来比较对应的每个数据是否相同,all()是用来比较一个张量里面的所有值是否在相同。

permute()

个人认为这个方法非常强大,可以完成任意维度的交换。我们先来看一个使用transpose()方法进行维度交换:

# b.shape=torch.Size([4, 3, 28, 32])
print(b.transpose(1,3).shape)                   # torch.Size([4, 32, 28, 3])
print(b.transpose(1,3).transpose(1,2).shape)    # torch.Size([4, 28, 32, 3])

再来看一下permute()方法:

# b.shape=torch.Size([4, 3, 28, 32])
print(b.permute(0,2,3,1).shape)                 # torch.Size([4, 28, 32, 3])

有没有感觉很强大。

相关文章:

深度学习pytorch——Tensor维度变换(持续更新)

view()打平函数 需要注意的是打平之后的tensor是需要有物理意义的,根据需要进行打平,并且打平后总体的大小是不发生改变的。 并且一定要谨记打平会导致维度的丢失,造成数据污染,如果想要恢复到原来的数据形式,是需要…...

Selenium-webdriver_manager判断是否已经下载过驱动(复用缓存驱动)

1,谷歌浏览器默认位置 2,ChromeDriverManager 下载的驱动位置 其中admin为机器的用户名 def installDriver(self):"""判断是否需要下载driver""""""找到本机谷歌浏览器版本""""""C:\P…...

【SQL】1174. 即时食物配送 II (窗口函数row_number; group by写法;对比;定位错因)

前述 推荐学习: 通俗易懂的学会:SQL窗口函数 题目描述 leetcode题目:1174. 即时食物配送 II 写法一:窗口函数 分组排序(以customer_id 分组,按照order_date 排序),窗口函数应用。…...

mvcc介绍

前提:在介绍mvcc之前,先简单介绍一下mysql事务的相关问题,mvcc归根结底是用来解决事务并发问题的,当然这个解决不是全部解决,只是解决了其中的一部分问题! mysql事务 一、事务的基本要素(ACID&a…...

强化PaaS平台应用安全:关键策略与措施

PaaS(平台即服务,Platform-as-a-Service)是一种云计算服务模式,可以为客户提供一个完整的云平台(硬件、软件和基础架构)以用于快捷开发、运行和管理项目,从而降低了企业云计算应用的高成本和复杂…...

K8s 集群高可用master节点ETCD挂掉如何恢复?

写在前面 很常见的集群运维场景,整理分享博文内容为 K8s 集群高可用 master 节点故障如何恢复的过程理解不足小伙伴帮忙指正 不必太纠结于当下,也不必太忧虑未来,当你经历过一些事情的时候,眼前的风景已经和从前不一样了。——村上…...

【Godot 4.2】常见几何图形、网格、刻度线点求取函数及原理总结

概述 本篇为ShapePoints静态函数库的补充和辅助文档。ShapePoints函数库是一个用于生成常见几何图形顶点数据(PackedVector2Array)的静态函数库。生成的数据可用于_draw和Line2D、Polygon2D等进行绘制和显示。因为不断地持续扩展,ShapePoint…...

如何利用POI导出报表

一、报表格式 二、依赖坐标 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>3.16</version> </dependency> <dependency><groupId>org.apache.poi</groupId><art…...

自动部署SSL证书到阿里云腾讯云CDN

项目地址&#xff1a;https://github.com/yxzlwz/ssl_update 项目简介 目前&#xff0c;自动申请和管理免费SSL证书的项目有很多&#xff0c;如个人正在使用的 acme.sh。然而在申请后&#xff0c;如果我们的需求不仅限于服务器本地的使用&#xff0c;证书的部署也是一件麻烦事…...

【系统性】 循序渐进学C++

循序渐进学C 第一阶段&#xff1a;基础 一、环境配置 1.1.第一个程序&#xff08;基本格式&#xff09; ​ #include <iosteam> using namespace std;int main(){cout<<"hello world"<<endl;system("pause"); }​ 模板 #include &…...

rust - 一个日志缓存记录的通用实现

本文给出了一个通用的设计模式&#xff0c;通过建造者模式实例化记录对象&#xff0c;可自定义格式化器将实例化后的记录对象写入到指定的缓存对象中。 定义记录对象 use chrono::prelude::*; use std::{cell::RefCell, ffi::OsStr, fmt, io, io::Write, path::Path, rc::Rc,…...

elasticsearch(RestHighLevelClient API操作)(黑马)

操作全是换汤不换药&#xff0c;创建一个request&#xff0c;然后使用client发送就可以了 一、增加索引库数据 Testvoid testAddDocument() throws IOException {//从数据库查出数据Writer writer writerService.getById(199);//将查出来的数据处理成json字符串String json …...

用尾插的思想实现移除链表中的元素

目录 一、介绍尾插 1.链表为空 2.链表不为空 二、题目介绍 三、思路 四、代码 五、代码解析 1. 2. 3. 4. 5. 6. 六、注意点 1. 2. 一、介绍尾插 整体思路为 1.链表为空 void SLPushBack(SLTNode** pphead, SLTDataType x) {SLTNode* newnode BuyLTNode(x); …...

【Kubernetes】k8s删除master节点后重新加入集群

目录 前言一、思路二、实战1.安装etcdctl指令2.重置旧节点的k8s3.旧节点的的 etcd 从 etcd 集群删除4.在 master03 上&#xff0c;创建存放证书目录5.把其他控制节点的证书拷贝到 master01 上6.把 master03 加入到集群7.验证 master03 是否加入到 k8s 集群&#xff0c;检查业务…...

HCIP—OSPF虚链路实验

OSPF虚链路—Vlink 作用&#xff1a;专门解决OSPF不规则区域所诞生的技术&#xff0c;是一种虚拟的&#xff0c;逻辑的链路。实现非骨干区域和骨干区域在逻辑上直接连接。注意虚链路条件&#xff1a;只能穿越一个区域&#xff0c;通常对虚链路进行认证功能的配置。虚链路认证也…...

RAxML-NG安装与使用-raxml-ng-v1.2.0(bioinfomatics tools-013)

01 背景 1.1 ML树 ML树&#xff0c;或最大似然树&#xff0c;是一种在进化生物学中用来推断物种之间进化关系的方法。最大似然&#xff08;Maximum Likelihood, ML&#xff09;是一种统计框架&#xff0c;用于估计模型参数&#xff0c;使得观察到的数据在该模型参数下的概率最…...

Tomcat内存马

Tomcat内存马 前言 描述Servlet3.0后允许动态注册组件 这一技术的实现有赖于官方对Servlet3.0的升级&#xff0c;Servlet在3.0版本之后能够支持动态注册组件。 而Tomcat直到7.x才支持Servlet3.0&#xff0c;因此通过动态添加恶意组件注入内存马的方式适合Tomcat7.x及以上。…...

pytorch之诗词生成3--utils

先上代码&#xff1a; import numpy as np import settingsdef generate_random_poetry(tokenizer, model, s):"""随机生成一首诗:param tokenizer: 分词器:param model: 用于生成古诗的模型:param s: 用于生成古诗的起始字符串&#xff0c;默认为空串:return: …...

OpenAI的ChatGPT企业版专注于安全性、可扩展性和定制化。

OpenAI的ChatGPT企业版&#xff1a;安全、可扩展性和定制化的重点 OpenAI的ChatGPT在商业世界引起了巨大反响&#xff0c;而最近推出的ChatGPT企业版更是证明了其在企业界的日益重要地位。企业版ChatGPT拥有企业级安全、无限GPT-4访问、更长的上下文窗口以及一系列定制选项等增…...

JS06-class对象

class对象 className 修改样式 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content&quo…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

UE5 音效系统

一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类&#xff0c;将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix&#xff0c;将上述三个类翻入其中&#xff0c;通过它管理每个音乐…...

Electron简介(附电子书学习资料)

一、什么是Electron&#xff1f; Electron 是一个由 GitHub 开发的 开源框架&#xff0c;允许开发者使用 Web技术&#xff08;HTML、CSS、JavaScript&#xff09; 构建跨平台的桌面应用程序&#xff08;Windows、macOS、Linux&#xff09;。它将 Chromium浏览器内核 和 Node.j…...

简单聊下阿里云DNS劫持事件

阿里云域名被DNS劫持事件 事件总结 根据ICANN规则&#xff0c;域名注册商&#xff08;Verisign&#xff09;认定aliyuncs.com域名下的部分网站被用于非法活动&#xff08;如传播恶意软件&#xff09;&#xff1b;顶级域名DNS服务器将aliyuncs.com域名的DNS记录统一解析到shado…...

【自然语言处理】大模型时代的数据标注(主动学习)

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models发表情况&#xff1a;2023-EMNLP作者单位&#xff1a;浙江大…...

ubuuntu24.04 编译安装 PostgreSQL15.6+postgis 3.4.2 + pgrouting 3.6.0 +lz4

文章目录 下载基础包下载源码包编译 PG编译 postgis编译安装 pgrouting下载源码包配置编译参数编译安装 初始化数据库建表并检查列是否使用了 lz4 压缩算法检查 postgis 与 pgrouting 是否可以成功创建 下载基础包 sudo apt update && sudo apt upgrade -y sudo apt i…...