当前位置: 首页 > news >正文

WPF中使用LiveCharts绘制散点图

一、背景

       这里的代码使用MVVM模式进行编写

二、Model

public class DataPoint{public double X { get; set; }public double Y { get; set; }}

三、ViewModel

public class ScatterChartViewModel{public SeriesCollection Series { get; set; }public ScatterChartViewModel(){//初始化数据var dataPoints = new List<DataPoint>{new DataPoint { X= 1, Y= 10 },new DataPoint { X= 2, Y= 20 },new DataPoint { X= 3, Y= 15 },};Series = new SeriesCollection(){new ScatterSeries{Title = "Data",Values = new ChartValues<ObservablePoint>(posPoints.Select(dp => new ObservablePoint(dp.X, dp.Y)))}};        }  }

四、View

<Window x:Class="DisplayData.Views.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d="http://schemas.microsoft.com/expression/blend/2008"xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"xmlns:local="clr-namespace:DisplayData.Views"mc:Ignorable="d"xmlns:lvc="clr-namespace:LiveCharts.Wpf;assembly=LiveCharts.Wpf"Title="Data" Height="900" Width="1200" WindowStartupLocation="CenterScreen"><Grid>          <lvc:CartesianChart Series="{Binding Series}" BorderBrush="#7ADA95" BorderThickness="1"></lvc:CartesianChart>       </Grid>
</Window>
public partial class MainWindow : Window{public MainWindow(){InitializeComponent();this.DataContext = new ScatterChartViewModel();}}

相关文章:

WPF中使用LiveCharts绘制散点图

一、背景 这里的代码使用MVVM模式进行编写 二、Model public class DataPoint{public double X { get; set; }public double Y { get; set; }} 三、ViewModel public class ScatterChartViewModel{public SeriesCollection Series { get; set; }public ScatterChartViewMod…...

Android Studio实现内容丰富的安卓博客发布平台

获取源码请点击文章末尾QQ名片联系&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动 项目编号078 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册登录 2.查看博客列表 3.查看博客详情 4.评论博客&#xff0c; 5.…...

【GPT-SOVITS-01】源码梳理

说明&#xff1a;该系列文章从本人知乎账号迁入&#xff0c;主要原因是知乎图片附件过于模糊。 知乎专栏地址&#xff1a; 语音生成专栏 系列文章地址&#xff1a; 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

数据结构大合集02——线性表的相关函数运算算法

函数运算算法合集02 顺序表的结构体顺序表的基本运算的实现1. 建立顺序表2. 顺序表的基本运算2.1 初始化线性表2. 2 销毁顺序表2.3 判断顺序表是否为空表2.4 求顺序表的长度2.5 输出顺序表2.6 按序号求顺序表中的元素2.7 按元素值查找2.8 插入数据元素2.9 删除数据元素 单链表的…...

threejs案例,与静态三角形网格的基本碰撞, 鼠标环顾四周并投球游戏

创建一个时钟对象: const clock new THREE.Clock();这行代码创建了一个新的THREE.Clock对象&#xff0c;它用于跟踪经过的时间。这在动画和物理模拟中很有用。 2. 创建场景: const scene new THREE.Scene();这行代码创建了一个新的3D场景。所有的物体&#xff08;如模型、灯…...

将FastSAM中的TextPrompt迁移到MobileSAM中

本博文简单介绍了SAM、FastSAM与MobileSAM,主要关注于TextPrompt功能的使用。从性能上看MobileSAM是最实用的,但其没有提供TextPrompt功能,故而参考FastSAM中的实现,在MobileSAM中嵌入TextPrompt类。并将TextPrompt能力嵌入到MobileSAM官方项目提供的gradio.py部署代码中,…...

KY191 矩阵幂(用Java实现)

描述 给定一个n*n的矩阵&#xff0c;求该矩阵的k次幂&#xff0c;即P^k。 输入描述&#xff1a; 第一行&#xff1a;两个整数n&#xff08;2<n<10&#xff09;、k&#xff08;1<k<5&#xff09;&#xff0c;两个数字之间用一个空格隔开&#xff0c;含义如上所示…...

基于Python的股票市场分析:趋势预测与策略制定

一、引言 股票市场作为投资领域的重要组成部分&#xff0c;其价格波动和趋势变化一直是投资者关注的焦点。准确预测股票市场的趋势对于制定有效的投资策略至关重要。本文将使用Python编程语言&#xff0c;结合时间序列分析和机器学习算法&#xff0c;对股票市场的历史数据进行…...

【C++】了解一下编码

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. 前言2. ASCII编码3. unicode4. GBK5. 类型转换 1. 前言 看到string里面还有Template instantiations&#xff1a; string其实是basic_string<char>&#xff0c;它还是一个模板。 再看看wstring&#xff1…...

生成式人工智能在金融领域:FinGPT、BloombergGPT及其未来

生成式人工智能在金融领域的应用&#xff1a;FinGPT、BloombergGPT 及其他 引言 生成式人工智能&#xff08;Generative AI&#xff09;是指能够生成与输入数据相似的新数据样本的模型。ChatGPT 的成功为各行各业带来了许多机会&#xff0c;激励企业设计自己的大型语言模型。…...

webpack5零基础入门-10babel的使用

Babel JavaScript 编译器。 主要用于将 ES6 语法编写的代码转换为向后兼容的 JavaScript 语法&#xff0c;以便能够运行在当前和旧版本的浏览器或其他环境中 1.安装相关包 npm install -D babel-loader babel/core babel/preset-env 2.进行相关配置 2.1第一种写法是在webp…...

SAR ADC教程系列5——FFT频谱泄露以及相干采样

频谱泄露的出现以及如何规避&#xff1f; 为什么要相干采样&#xff1f; 1.分析ADC输出信号的频谱工具&#xff1a;DFT&#xff08;Discrete Fourier Transform) 重点&#xff1a;DFT相邻频谱频率间隔为fs/N 如何规避频谱泄露&#xff1f; 对于DFT&#xff0c;它对于接收到的信…...

算法D48 | 动态规划10 | 121. 买卖股票的最佳时机 122.买卖股票的最佳时机II

股票问题是一个动态规划的系列问题&#xff0c;今日安排的题目不多&#xff0c;大家可以慢慢消化。 121. 买卖股票的最佳时机 视频讲解&#xff1a;https://www.bilibili.com/video/BV1Xe4y1u77q https://programmercarl.com/0121.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A…...

Windows10安装RubyRails步骤

2024年3月14日安装&#xff0c;亲测。记录一下以便后续需要查看。 首先在官网下载RubyInstaller for Windows - 国内镜像 rubyinstaller.cn 版本是3.3.0 下载完后图形化界面安装 安装完毕&#xff0c;出现Ruby的命令行&#xff0c;或者在开始菜单出现start command prompt wi…...

Sqlserver 模糊查询中文及在mybatis xml【非中文不匹配查询】N@P2问题

问题 sqlserver模糊查询或相等&#xff0c;两者都无法查询。 百度方案解释 Like 后的N是表示unicode字符。获取SQL Server数据库中Unicode类型的数据时&#xff0c;字符串常量必须以大写字母 N 开头&#xff0c;否则字符串将转换为数据库的默认代码页(字符集编码)&#xff0…...

旧华硕电脑开机非常慢 电脑开机黑屏很久才显示品牌logo导致整体开机速度非常的慢怎么办

前提条件 电池需要20&#xff05;&#xff08;就是电池没有报废&#xff09;且电脑接好电源&#xff0c;千万别断电&#xff0c;电脑会变成砖头的 解决办法 更新bios即可解决&#xff0c;去对应品牌官网下载最新的bios版本就行了 网上都是一些更新驱动啊...

【go语言开发】性能分析工具pprof使用

本文主要介绍如何在项目中使用pprof工具。首先简要介绍pprof工具的作用&#xff1b;然后介绍pprof的应用场景&#xff0c;主要分为工具型应用和服务型应用。最后数据分析项目&#xff0c;先采集项目信息&#xff0c;再可视化查看 文章目录 前言应用场景工具型应用服务型应用 数…...

ARM_基础之RAS

Reliability, Availability, and Serviceability (RAS), for A-profile architecture 源自 https://developer.arm.com/documentation/102105/latest/ 1 Introduction to RAS 1.1 Faults,Errors,and failures 三个概念的区分&#xff1a; • A failure is the event of devia…...

VScode(1)之内网离线安装开发环境(VirtualBox+ubuntu+VScode)

VScode(1)之内网离线安装开发环境(VirtualBoxubuntuVScode) Author: Once Day Date: 2022年7月18日/2024年3月17日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 全系列文…...

Python爬虫与数据可视化源码免费领取

引言 作为一名在软件技术领域深耕多年的专业人士&#xff0c;我不仅在软件开发和项目部署方面积累了丰富的实践经验&#xff0c;更以卓越的技术实力获得了&#x1f3c5;30项软件著作权证书的殊荣。这些成就不仅是对我的技术专长的肯定&#xff0c;也是对我的创新精神和专业承诺…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...