当前位置: 首页 > news >正文

【GPT-SOVITS-06】特征工程-HuBert原理

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。

知乎专栏地址:
语音生成专栏

系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理

1.概述

HuBert 模型目的在于提取音频自编码特征,其核心架构如下:

说明:代码主要参考 HuggingFace 的transformers 开源库

在这里插入图片描述

  • 输入原始音频数据,通过类似Bert原理的编码器形成隐变量,即在进入多头注意力模块前增加了随机的掩码
  • 训练时,第一轮比对原始音频的 MFCC 特征做 kmean 编码,类似残差向量量化网络。针对隐变量与编码做交叉熵损失
  • 训练时,第二轮比对编码器生成的隐变量(第6/9层)做 kmean 编码,再针对隐变量与编码做交叉熵损失

与论文中的截图做一下对比:
在这里插入图片描述
在这里插入图片描述

2.核心源码解析

2.1、特征提取:HubertFeatureEncoder

在这里插入图片描述
默认为 7层一维卷积,每层卷积参数,主要是 kernel 和 stride 不同

2.2、核心编码器:HubertEncoder

在这里插入图片描述

  • 默认为 12层编码器模块
  • 在输出时,包含了最终层的输出,以及中间各层的输出

2.3、有监督微调:HubertForCTC

在这里插入图片描述

  • 论文中同样给出了基于CTC损失的微调
  • 在微调时,特征提取编码器参数固定

CTC 损失的价值,主要是用于输出和标签的不一致性。举例:
假设 hello 这个单词在10秒内完成,则按秒分帧,每一秒对应一个字母的概率。即可能是 hhhhellooo。损失计算的时候是要对比 hhhhellooo 和 hello 的差异。

3、调试代码参考

from transformers import HubertModel, HubertConfig
import torch
import librosa
import torch.nn as nndef _test_pred_vec():config = HubertConfig()model = HubertModel(config)device = "cuda" if torch.cuda.is_available() else "cpu"model.to(device)wav_in = "../data/test.wav"audio, sr  = librosa.load(wav_in, sr=16000)audio = torch.from_numpy(audio).to(device)x = audio[None, :]vec = model.forward(x)print(vec)def _test_ctc_loss():ctc_loss        = nn.CTCLoss()log_probs       = torch.randn(50, 16, 20).log_softmax(2).requires_grad_()targets         = torch.randint(1, 20, (16, 30), dtype=torch.long)input_lengths   = torch.full((16,), 50, dtype=torch.long)target_lengths  = torch.randint(10, 30, (16,), dtype=torch.long)loss            = ctc_loss(log_probs, targets, input_lengths, target_lengths)print(loss)if __name__ == '__main__':#_test_pred_vec()_test_ctc_loss()

相关文章:

【GPT-SOVITS-06】特征工程-HuBert原理

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

ros小问题之差速轮式机器人轮子不显示(rviz gazebo)

在rviz及gazebo练习差速轮式机器人时,很奇怪,只有个机器人的底板及底部的两个万向轮,如下图, 后来查看相关.xacro文件,里面是引用包含了轮子的xacro文件,只需传入不同的参数即可调用生成不同位置的轮子&…...

网络安全实训Day5

写在前面 昨天忘更新了......讲的内容不多,就一个NAT。 之前记的NAT的内容:blog.csdn.net/Yisitelz/article/details/131840119 网络安全实训-网络工程 NAT 公网地址与私网地址 公网地址 可以在互联网上被寻址,由运营商统一分配全球唯一的I…...

【Unity入门】详解Unity中的射线与射线检测

目录 前言一、射线的创建方法二、射线检测1、Raycast()Raycast()不使用射线RayRaycast()使用射线Ray 2、RaycastAll()使用射线RayRaycastAll() 不使用射线Ray 3、射线的碰撞信息 三、示例四、具体使用场景射线的调试方法1、Debug.DrawLine()2、Debug.DrawRay利用Gizmos 前言 碰…...

实验11-2-5 链表拼接(PTA)

题目: 本题要求实现一个合并两个有序链表的简单函数。链表结点定义如下: struct ListNode {int data;struct ListNode *next; }; 函数接口定义: struct ListNode *mergelists(struct ListNode *list1, struct ListNode *list2); 其中lis…...

Mybatis Plus + Spring 分包配置 ClickHouse 和 Mysql 双数据源

目录 一、背景 二、各个配置文件总览(文件位置因人而异) 2.1 DataSourceConfig 2.2 MybatisClickHouseConfig (ClickHouse 配置类) 2.3 MybatisMysqlConfig(Mysql 配置类) 2.4 application.propertie…...

27-3 文件上传漏洞 - 文件类型绕过(后端绕过)

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 导语 后端校验由开发决定是检测文件后缀,还是文件内容。 文件类型绕过(Content-Type) 1)MIME 类型 定义:MIME(Multipurpose Internet Mail Extensions)类型是一种标准,…...

widget一些控件的使用

QRadioButton使用 先使用ui界面拖拽创建radio button #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);ui->male->setChecked(true);//选中按钮ui->o…...

Python基础(七)之数值类型集合

Python基础(七)之数值类型集合 1、简介 集合,英文set。 集合(set)是由一个或多个元素组成,是一个无序且不可重复的序列。 集合(set)只存储不可变的数据类型,如Number、…...

电脑充电器能充手机吗?如何给手机充电?

电脑充电器可以给手机充电吗? 电脑充电器可以给手机充电,但前提是电脑充电器的功率输出与手机的功率匹配且接口匹配。 假设电脑充电器的输出功率为5V/2A,手机也支持5V/2A的输入功率。 只要接口匹配,就可以使用电脑充电器给手机充…...

矩阵中移动的最大次数

文章目录 所属专栏:BFS算法 题目链接 思路如下: 1.首先我们需要从第一列开始遍历,寻找每一个都能够满足条件的位置,将它插入到数组里面 2.第一列遍历完了后我们先判断第一列的数是否都满足条件插入到数组里面,如果数组为空&#…...

Linux:系统初始化,内核优化,性能优化(3)

优化系统的文件句柄数(全局) 也就是系统的最大文件数量 查看最大数量 cat /proc/sys/fs/file-max 当我们的服务器有非常大的一个数据并发的时候十几二十万的文件需要去配置,可能这个是远远不够的,我们就要去修改 vim /etc/sy…...

使用 GitHub Actions 通过 CI/CD 简化 Flutter 应用程序开发

在快节奏的移动应用程序开发世界中,速度、可靠性和效率是决定项目成功或失败的关键因素。持续集成和持续部署 (CI/CD) 实践已成为确保满足这些方面的强大工具。当与流行的跨平台框架 Flutter 和 GitHub Actions 的自动化功能相结合时,开发人员可以创建无…...

微软 CEO Satya Nadella 的访谈

Nicolai: 大家好。我刚经历了人生中最不可思议的事情,我有幸采访了微软的 CEO、Satya Nadella。微软现在是全球市值最高的公司。真是太棒了,请继续关注。 第一章 微软的发展与平台转变 Nicolai: Satya,你是全球市值最高公司的 CEO&#xff…...

万界星空科技商业开源MES,技术支持+项目合作

商业开源的一套超有价值的JAVA制造执行MES系统源码 亲测 带本地部署搭建教程 教你如何在本地运行运行起来。 开发环境:jdk11tomcatmysql8springbootmaven 可以免费使用,需要源码价格便宜,私信我获取。 一、系统概述: MES制造执…...

Docker Mysql无root账户创建最高权限用户

创建最高权限用户 进入 MySQL 容器的命令行界面。您可以使用以下命令&#xff1a; 修改配置文件my.cnf 无密码进入 [mysqld]下输入 skip-grant-tables重启mysql容器 进入容器内部 container_name 容器ID或name docker restart mysql docker exec -it <container_name>…...

常用芯片学习——DS3231M芯片

DS3231M RTC实时时钟 芯片介绍 DS3231M是一款低成本、极其精确的 I2C 实时时钟 &#xff08;RTC&#xff09;。该设备集成了电池输入&#xff0c;并在设备主电源中断时保持准确的计时。微型电子机械系统 &#xff08;MEMS&#xff09; 谐振器的集成提高了器件的长期精度&…...

蓝桥杯单片机快速开发笔记——矩阵键盘

一、原理分析 二、思维导图 三、示例框架 定义了四个位控制变量&#xff0c;用于控制键盘扫描时的行列信号。 在Scan_Keys()函数中&#xff0c;首先设置行列信号&#xff0c;将其中一个行信号置为0&#xff0c;另一个行信号置为1&#xff0c;同时将列信号置为1&#xff0c;用于…...

每周一算法:双向深搜

题目描述 达达帮翰翰给女生送礼物&#xff0c;翰翰一共准备了 N N N 个礼物&#xff0c;其中第 i i i 个礼物的重量是 G [ i ] G[i] G[i]。 达达的力气很大&#xff0c;他一次可以搬动重量之和不超过 W W W的任意多个物品。 达达希望一次搬掉尽量重的一些物品&#xff0c;请…...

蓝桥杯刷题(十)

1.翻转 代码 输入数据&#xff0c;每组数据进行比较&#xff0c;j的范围掐头去尾&#xff0c;若a[j]b[j]&#xff0c;继续&#xff0c;若出现010,101子串则改成000,111&#xff0c;遍历完后比较a是否等于b&#xff0c;相同则输出次数&#xff0c;不同则输出-1。 for _ in ran…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...