当前位置: 首页 > news >正文

【Paper Reading】6.RLHF-V 提出用RLHF的1.4k的数据微调显著降低MLLM的虚幻问题

分类

内容

论文题目

RLHF-V: Towards Trustworthy MLLMs via Behavior Alignment from Fine-grained Correctional Human Feedback

作者

作者团队:由来自清华大学和新加坡国立大学的研究者组成,包括Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun, Tat-Seng Chua。

发表年份

CVPR 2024

摘要

文章针对多模态大型语言模型(MLLMs)在生成与图片不符的文本(即幻觉问题)提出了RLHF-V框架。通过从细粒度的人类反馈中学习,显著减少基础MLLM的幻觉率,提高了模型的可信度和实用性。

引言

强调了MLLMs在多模态理解、推理和交互方面的能力,同时指出其存在的幻觉问题,即生成与关联图片不符的文本,这一问题限制了MLLMs在实际应用中的可信度。

主要内容

RLHF-V框架:论文提出了RLHF-V,一种旨在通过细粒度人类反馈对多模态大型语言模型(MLLMs)行为进行校准的框架,以解决模型产生的幻觉问题,即生成的文本与关联图片不符。这种框架的关键思想是通过人类偏好的形式收集细粒度的反馈,并利用这些反馈来优化模型,从而提高其在处理多模态输入时的可靠性和准确性。

细粒度的人类反馈收集:RLHF-V的一个创新之处在于其收集人类反馈的方式。不同于以往依赖粗粒度或整体排名的反馈,RLHF-V要求人类注释者对模型输出中的具体错误或幻觉部分进行细节级的校正。这种细粒度的反馈不仅提供了更明确的学习信号,而且还避免了因语言多样性或偏见而引起的误导。

密集直接偏好优化(DDPO):为了有效利用收集到的细粒度人类反馈,RLHF-V采用了一种名为密集直接偏好优化(DDPO)的技术。DDPO是一种新的优化策略,专门设计用来处理细粒度的反馈,并能够直接在偏好数据上进行模型训练。通过强化学习方法,DDPO能够精确地调整模型的行为,以减少幻觉产生,增强模型输出的事实依据。

实验

实验设计:为了验证RLHF-V的有效性,作者在五个基准数据集上进行了广泛的实验。这些实验旨在评估RLHF-V在减少幻觉、提高模型可靠性方面的性能。实验包括自动评估和人类评估两部分,分别从模型的准确性、可信度以及与人类偏好的一致性进行评价。

基准数据集:实验涉及的基准数据集包括图像描述、视觉问答和多模态对话等任务,旨在全面评估RLHF-V在多种多模态交互场景下的表现。通过与当前最先进的MLLMs(包括未使用RLHF-V优化的基线模型)进行对比,实验结果展示了RLHF-V在这些任务上的显著改进。

主要结果:实验结果表明,使用RLHF-V框架进行优化的MLLMs在减少幻觉、提高文本与图片一致性方面表现出色。具体而言,与基线模型相比,RLHF-V能够显著降低幻觉率,改善模型输出的可信度和准确性。在人类评估方面,RLHF-V优化后的模型产生的输出更加符合人类的偏好和期望,显示出对复杂多模态输入的更好理解。

效率与性能:除了提升模型性能,RLHF-V还显示出良好的数据和计算效率。即使在有限的标注数据下,RLHF-V也能通过其细粒度的反馈学习机制有效地改进模型行为,证明了其在实际应用中的可行性和效率。

结论

RLHF-V通过细粒度的人类反馈校准MLLMs的行为,显著提高了模型的可信度,并在开源MLLMs中取得了最先进的性能。

阅读心得

亮点:

  1. 制作了一个用于解决幻觉问题的精细化微调的数据集,共有1.4K个样本(HF上现在已经更新到5.7k)。

  2. RLHF-V提供了一种有效的方法来解决MLLMs中的幻觉问题,通过精细的人类反馈和新颖的优化技术,提高了模型在多模态任务中的可信度和实用性。

  3. 提出DDPO这种方式,源于DPO这篇论文,DPO是说可以直接通过调整模型参数来实现RLHF无需单独训练强化学习模型(可以看我这篇博客),而DDPO在此基础上做了改进,就是把一段话中的虚幻部分和真实部分切分成了segment,对这些segment分别计算损失来实现细粒度的监督。

相关文章:

【Paper Reading】6.RLHF-V 提出用RLHF的1.4k的数据微调显著降低MLLM的虚幻问题

分类 内容 论文题目 RLHF-V: Towards Trustworthy MLLMs via Behavior Alignment from Fine-grained Correctional Human Feedback 作者 作者团队:由来自清华大学和新加坡国立大学的研究者组成,包括Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Y…...

Aloudata 倾力打造,《Data Fabric 白皮书 2.0》正式发布

数字经济时代,越来越多企业开始寻求全新的数据管理范式,以更有效地管理、利用不断增长的数据资产。在此背景下,Data Fabric 的概念应运而生,被视为面向未来的数据管理解决方案。 距离第一版白皮书问世已经过去一年多时间&#xff…...

docker内部无法使用ping等网络工具解决方案

通常docker内部没有网络,所以我们先离线安装需要的依赖包,然后再使用sh脚本容器内部访问宿主机同网络端其他服务器ip,实现监测远程ip telnet包依赖于netbase包,但是netbase包没有安装。你需要先安装netbase包,然后再尝试安装teln…...

后端工程师快速使用vue和Element

文章目录 Vue1 Vue概述2 快速入门3 Vue指令3.1 v-bind和v-model3.2 v-on3.3 v-if和v-show3.4 v-for3.5 案例 4 生命周期 Element快速使用1 Element介绍2 快速入门3 当前页面中嵌套另一个页面案例代码案例截图 Vue 1 Vue概述 通过我们学习的htmlcssjs已经能够开发美观的页面了…...

自学rabbitmq入门到精通

交换机的fault (发布与订阅模式) 因为消息是由生产者发送给excahnge,exchange发送给队列, 然后由队列发送给消费者的。 展示使用图形化界面使用fanout模式。 创建交换机 然后创建三个队列,绑定对应的交换机&#xff…...

由浅到深认识C语言(13):共用体

该文章Github地址:https://github.com/AntonyCheng/c-notes 在此介绍一下作者开源的SpringBoot项目初始化模板(Github仓库地址:https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址:https://blog.csdn…...

python爬虫(9)之requests模块

1、获取动态加载的数据 1、在开发者工具中查看动态数据 找到csdn的门户的开发者工具后到这一页面。 2、加载代码 import requests headers {User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36…...

phpstudy自定义安装mysql8.3并启动

phpstudy自定义安装mysql8.3并启动 先去官网:https://dev.mysql.com/downloads/下载压缩包文件 然后按下面的图片一步一步操作 选择版本,选择第一个压缩包文件,下载 下载完成后,解压到phpstudy环境目录下,如下图 然后进入mysq…...

Netty 学习资料

Netty 学习资料 搜集了一下Java网络库Netty的学习资料,整理如下,有空花时间研究一下。 1、Netty学习手册 《尚硅谷 Netty 核心技术及源码剖析》课程学习手册 本课程不适合零基础的学员,需要掌握常用的设计模式和数据结构 掌握 Java 的面向对…...

【概率论中的两种重要公式:全概率和贝叶斯】

贝叶斯公式(Bayes’ Theorem)是概率论中的一条重要定理,用于计算条件概率。它描述了在已知某一事件发生的条件下,另一事件发生的概率。贝叶斯公式如下所示: P ( A ∣ B ) P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) \…...

python中的闭包

一、闭包 1、作用域 在Python代码中,作用域分为两种情况:全局作用域 与 局部作用域 2、变量的作用域 在全局定义的变量 > 全局变量 在局部定义的变量 > 局部变量 3、全局变量与局部变量的访问范围 ① 在全局作用域中可以访问全局变量&#…...

成功解决RuntimeError: OpenSSL 3.0‘s legacy provider failed to load

报错 RuntimeError: OpenSSL 3.0s legacy provider failed to load. This is a fatal error by default, but cryptography supports running without legacy algorithms by setting the environment variable CRYPTOGRAPHY_OPENSSL_NO_LEGACY. If you did not expect this er…...

【 React 】React 组件之间如何通信?

相关文章: React Context的使用方法 react Provider Consumer 使用方法 1. 是什么 我们将组件间通信可以拆分为两个词: 组件通信 组件是vue中最强大的功能之一,同样组件化是React的核心思想 相比vue,React的组件更加灵活和多样…...

汇总全网免费API,持续更新(新闻api、每日一言api、音乐。。。)

Public&FreeAPI 网址:apis.whyta.cn (推荐) UomgAPI 网址:https://api.uomg.com 教书先生 网址:https://api.oioweb.cn/ 山海API https://api.shserve.cn/ 云析API铺 https://api.a20safe.com/ 韩小韩…...

Android SystemServer进程解析

SystemServer进程在android系统中占了举足轻重的地位,系统的所有服务和SystemUI都是由它启动。 一、SystemServer进程主函数流程 1、主函数三部曲 //frameworks/base/services/java/com/android/server/SystemServer.java /** * The main entry point from zy…...

Github主页设置贪吃蛇详细教程

先看最终实现结果: 有条贪吃蛇放在主页还是蛮酷的哈哈哈。接下来我来讲一讲怎么在Github主页添加一条贪吃蛇。 首先要修改自己的Github的主页,我们得有一个特殊的仓库——这个仓库必须与你的Github用户名保持一致,并且需要公开&#xff0c…...

二、实现fastdfs文件上传与延迟删除功能的Spring Boot项目

如何在Spring Boot项目中集成FastDFS实现文件上传功能,并添加支持延迟删除功能的实现。 一、Spring Boot 中集成 fastdfs 使用 1、文件上传功能实现 首先,让我们看一下如何实现文件上传功能的接口方法: RestController public class File…...

Android FrameWork 学习路线

目录 前言 学习路线: 1.基础知识 2、AOSP 源码学习 3. AOSP 源码编译系统 4. Hal与硬件服务 5.基础组件 6. Binder 7. 系统启动过程分析 8. 应用层框架​编辑 9. 显示系统 10. Android 输入系统 11. 系统应用 前言 Android Framework 涉及的行业相当广…...

前端开发者如何打造自己的生态以及ip

作为独立开发者,在公司的岗位上面,经常面对的是页面,但我们不能局限页面,页面是切入点。 1在需求页面的过程中,我们会接触ui,原型,软件,需求, 2在接口对接的过程中&#…...

C语言实现一个两个数加减乘除的答题代码(含文件保存),用户增加,题目增加,题目测试,题目答题等等

目录 1、这是我大一自己写的小代码,现在翻到了就分享出来,高手勿喷。 2、项目运行 3、获取完整源码网址 1、这是我大一自己写的小代码,现在翻到了就分享出来,高手勿喷。 2、项目运行 (1)测试模块 每次…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...