当前位置: 首页 > news >正文

深度学习之扩散模型(Diffusion model)

代码解析:正向扩散过程和加噪演示

  1. 引言
    这段代码实现了一个正向扩散过程和加噪演示的功能。通过生成一个特定形状的数据集,并在每个时间步长上应用正向扩散过程和加噪过程,最终展示了数据点在空间中的演变过程。

  2. 数据集生成
    通过 make_swiss_roll 函数生成一个类似瑞士卷的数据集,数据集具有特定的形状和噪声。在这个示例中,数据集被缩放和裁剪,以便更好地展示正向扩散和加噪的效果。

  3. 超参数设定
    设定了一系列超参数,包括时间步数 num_steps 和用于控制正向扩散过程的 alphas 和 betas。这些超参数决定了正向扩散过程中的权重变化,并影响数据点在空间中的演变轨迹。

  4. 正向扩散过程
    定义了一个函数 q_x,用于执行正向扩散过程。该函数接受初始数据点和时间步长作为输入,并根据预先设定的超参数计算出新的数据点。在每个时间步长上,根据权重 alphas 和 betas,将初始数据点与噪声相结合,生成新的数据点。

  5. 加噪演示
    通过循环迭代,每隔一定的时间步长,在图表中展示了数据点的演变过程。在每个演示步骤中,通过调用 q_x 函数生成新的数据点,并在图表中以散点图的形式展示。这样可以清晰地观察到数据点在空间中的变化,从而更好地理解加噪的效果。

  6. 结论
    这段代码展示了如何使用正向扩散过程和加噪过程来生成和演示数据集的变化。通过调整超参数和观察结果,可以更好地理解数据的分布和特征,为后续的数据分析和建模工作提供参考。

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll  # 导入 make_swiss_roll 函数# 构建我们需要的数据集
s_curve, _ = make_swiss_roll(10**4, noise=0.1)
s_curve = s_curve[:, [0, 2]] / 10.0
dataset = torch.Tensor(s_curve).float()# 确定时间步数
num_steps = 100# 确定alpha、beta超参数的值
betas = torch.linspace(-6, 6, num_steps)
betas = torch.sigmoid(betas) * (0.5e-2 - 1e-5) + 1e-5
alphas = 1 - betas
alphas_prod = torch.cumprod(alphas, 0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(), alphas_prod[:-1]], 0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)# 正向扩散过程——根据x_0和noise计算出任意时刻的x_t值
def q_x(x_0, t):noise = torch.randn_like(x_0)alphas_t = alphas_bar_sqrt[t]alphas_1_m_t = one_minus_alphas_bar_sqrt[t]return (alphas_t * x_0 + alphas_1_m_t * noise)# 演示加噪过程,每20步展示一次结果
num_shows = 20
fig, axs = plt.subplots(2, 10, figsize=(28, 3))
for i in range(num_shows):j = i // 10k = i % 10q_i = q_x(dataset, torch.tensor([i * num_steps // num_shows]))axs[j, k].scatter(q_i[:, 0], q_i[:, 1], color='red', edgecolor='white')axs[j, k].set_axis_off()axs[j, k].set_title(f'$q(\\mathbf{{x}}_{{{i * num_steps // num_shows}}})$')
plt.show()

相关文章:

深度学习之扩散模型(Diffusion model)

代码解析:正向扩散过程和加噪演示 引言 这段代码实现了一个正向扩散过程和加噪演示的功能。通过生成一个特定形状的数据集,并在每个时间步长上应用正向扩散过程和加噪过程,最终展示了数据点在空间中的演变过程。 数据集生成 通过 make_swiss…...

Tomcat Session ID---会话保持

简单拓补图 一、负载均衡、反向代理 7-1nginx代理服务器配置 [rootdlnginx ~]#yum install epel-release.noarch -y ###安装额外源[rootdlnginx ~]#yum install nginx -y[rootdlnginx ~]#systemctl start nginx.service[rootdlnginx ~]#systemctl status nginx.service [ro…...

Session会话绑定

1.需求原因 用户的请求,登录的请求,经过负载均衡后落到后面的web服务器上,登录的状态/信息也会记录在web服务器上,就会导致不通的web服务器上,登录状态不统一,造成用户频繁需要登录 2.目标:如何实现会话保持/会话共享 方案一:登录状态写入cookie中.(wor…...

win7、win10、win11 系统能安装的.net framework 版本以

win7、win10、win11 系统能安装的.net framework 版本分别是多少?以及能安装的最高版本是多少? 以下是各Windows系统能够安装和支持的.NET Framework版本及其最高可安装版本的概述: Windows 7: 自带 .NET Framework 3.5.1&#x…...

RediSearch比Es搜索还快的搜索引擎

1、介绍 RediSearch是一个Redis模块,为Redis提供查询、二次索引和全文搜索。要使用RediSearch,首先要在Redis数据上声明索引。然后可以使用重新搜索查询语言来查询该数据。RedSearch使用压缩的反向索引进行快速索引,占用内存少。RedSearch索…...

mybatis-plus 的saveBatch性能分析

Mybatis-Plus 的批量保存saveBatch 性能分析 目录 Mybatis-Plus 的批量保存saveBatch 性能分析背景批量保存的使用方案循环插入使用PreparedStatement 预编译优点:缺点: Mybatis-Plus 的saveBatchMybatis-Plus实现真正的批量插入自定义sql注入器定义通用…...

python异常:pythonIOError异常python打开文件异常

1.python读取不存在的文件时,抛出异常 通过 open()方法以读“r”的方式打开一个 abc.txt 的文件(该文件不存在),执行 open()打开一个不存在的文件时会抛 IOError 异常,通过 Python 所提供的 try...except...语句来接收…...

电话机器人语音识别用哪家更好精准度更高。

语音识别系统的选择取决于你的具体需求,包括但不限于识别精度、速度、易用性、价格等因素。以下是一些在语音识别领域表现较好的公司和产品: 科大讯飞:科大讯飞是中国最大的语音识别技术提供商之一,其语音识别技术被广泛应用于各…...

【Unity动画】Unity如何导入序列帧动画(GIF)

Unity 不支持GIF动画的直接播放,我们需要使用序列帧的方式 01准备好序列帧 02全部拖到Unity 仓库文件夹中 03全选修改成精灵模式Sprite 2D ,根据需要修改尺寸,点击Apply 04 创建一个空物体 拖动序列上去 然后全选所有序列帧,拖到这个空物体…...

uniapp APP 上传文件

/*** 上传文件*/uploadPhoneFile:function(callback,params {}) {let fileType [.pdf,.doc,.xlsx,.docx,.xls]// #ifdef APP-PLUSplus.io.chooseFile({title: 选择文件, filetypes: [doc, docx], // 允许的文件类型 multiple: false, // 是否允许多选 },(e)>{const tem…...

arcgis数据导出到excel

将arcgis属性数据导出到excel: 1) 工具箱\系统工具箱\Conversion Tools.tbx\Excel\Excel 转表 2)用excel打开导出的图层文件中后缀为.dbf的数据(方便快捷,但是中文易乱码)...

吴恩达深度学习环境本地化构建wsl+docker+tensorflow+cuda

Tensorflow2 on wsl using cuda 动机环境选择安装步骤1. WSL安装2. docker安装2.1 配置Docker Desktop2.2 WSL上的docker使用2.3 Docker Destop的登陆2.4 测试一下 3. 在WSL上安装CUDA3.1 Software list needed3.2 [CUDA Support for WSL 2](https://docs.nvidia.com/cuda/wsl-…...

R语言:microeco:一个用于微生物群落生态学数据挖掘的R包:第七:trans_network class

# 网络是研究微生物生态共现模式的常用方法。在这一部分中,我们描述了trans_network类的所有核心内容。 # 网络构建方法可分为基于关联的和非基于关联的两种。有几种方法可以用来计算相关性和显著性。 #我们首先介绍了基于关联的网络。trans_network中的cal_cor参数…...

ubuntu下在vscode中配置matplotlibcpp

ubuntu下在vscode中配置matplotlibcpp 系统:ubuntu IDE:vscode 库:matplotlib-cpp matplotlibcpp.h文件可以此网址下载:https://github.com/lava/matplotlib-cpp 下载的压缩包中有该头文件,以及若干实例程序。 参考…...

Vue面试题,背就完事了

1.vue的生命周期有哪些及每个生命周期做了什么? Vue.js 的生命周期可以分为以下几个核心阶段,每个阶段都伴随着特定的钩子函数(生命周期钩子)来执行相应的操作: 创建阶段: beforeCreate:实例被创建后、数…...

centos创建并运行一个redis容器 并支持数据持久化

步骤 : 创建redis容器命令 docker run --name mr -p 6379:6379 -d redis redis-server --appendonly yes 进入容器 : docker exec -it mr bash 链接redis : redis-cli 查看数据 : keys * 存入一个数据 : set num 666 获取数据 : get num 退出客户端 : exit 再退…...

nvm安装和使用保姆级教程(详细)

一、 nvm是什么 : nvm全英文也叫node.js version management,是一个nodejs的版本管理工具。nvm和npm都是node.js版本管理工具,为了解决node.js各种版本存在不兼容现象可以通过它可以安装和切换不同版本的node.js。 二、卸载之前安装的node: …...

跳绳计数,YOLOV8POSE

跳绳计数,YOLOV8POSE 通过计算腰部跟最初位置的上下波动,计算跳绳的次数...

阿里云ecs服务器配置反向代理上传图片

本文所有软件地址: 链接:https://pan.baidu.com/s/12OSFilS-HNsHeXTOM47iaA 提取码:dqph 为什么要使用阿里云服务器? 项目想让别人通过外网进行访问就需要部署到我们的服务器当中 1.国内知名的服务器介绍 国内比较知名的一些…...

免费阅读篇 | 芒果YOLOv8改进110:注意力机制GAM:用于保留信息以增强渠道空间互动

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 该专栏完整目录链接: 芒果YOLOv8深度改进教程 该篇博客为免费阅读内容,直接改进即可🚀🚀&#x1f…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...