01|模型IO:输入提示、调用模型、解析输出
Model I/O
可以把对模型的使用过程拆解成三块,分别是输入提示(对应图中的Format)、调用模型(对应图中的Predict)和输出解析(对应图中的Parse)。这三块形成了一个整体,因此在LangChain中这个过程被统称为 Model I/O。
提示模板
提示工程:Prompt Engineering
吴恩达老师在他的提示工程课程中所说的:
- 给予模型清晰明确的指示
- 让模型慢慢地思考
# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """
您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template)
# 打印LangChain提示模板的内容
print(prompt)
提示模板的具体内容如下:
input_variables=['flower_name', 'price']
output_parser=None partial_variables={}
template='/\n您是一位专业的鲜花店文案撰写员。
\n对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?\n'
template_format='f-string'
validate_template=True
LangChain 提供了多个类和函数,也为各种应用场景设计了很多内置模板,使构建和使用提示变得容易。
语言模型
LangChain中支持的模型有三大类。
- 大语言模型(LLM) ,也叫Text Model,这些模型将文本字符串作为输入,并返回文本字符串作为输出。Open AI的text-davinci-003、Facebook的LLaMA、ANTHROPIC的Claude,都是典型的LLM。
- 聊天模型(Chat Model),主要代表Open AI的ChatGPT系列模型。这些模型通常由语言模型支持,但它们的 API 更加结构化。具体来说,这些模型将聊天消息列表作为输入,并返回聊天消息。
- 文本嵌入模型(Embedding Model),这些模型将文本作为输入并返回浮点数列表,也就是Embedding。
接上面的代码:
# 导入LangChain中的OpenAI模型接口
from langchain import OpenAI
# 创建模型实例
model = OpenAI(model_name='text-davinci-003')
# 输入提示
input = prompt.format(flower_name=["玫瑰"], price='50')
# 得到模型的输出
output = model(input)
# 打印输出内容
print(output)
具体的提示:“您是一位专业的鲜花店文案撰写员。对于售价为 50 元的玫瑰,您能提供一个吸引人的简短描述吗?”
模型可以自由选择、自主训练,而调用模型的框架往往是有章法、而且可复用的。
输出解析
在开发具体应用的过程中,很明显我们不仅仅需要文字,更多情况下我们需要的是程序能够直接处理的、结构化的数据。
在这个文案中,如果你希望模型返回两个字段:
- description:鲜花的说明文本
- reason:解释一下为何要这样写上面的文案
A:“文案是:让你心动!50元就可以拥有这支充满浪漫气息的玫瑰花束,让TA感受你的真心爱意。为什么这样说呢?因为爱情是无价的,50元对应热恋中的情侣也会觉得值得。”
B:{description: “让你心动!50元就可以拥有这支充满浪漫气息的玫瑰花束,让TA感受你的真心爱意。” ; reason: “因为爱情是无价的,50元对应热恋中的情侣也会觉得值得。”}
像b这种数据结构,langchain中的输出解析器可以帮助我们实现
# 通过LangChain调用模型
from langchain import PromptTemplate, OpenAI# 导入OpenAI Key
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'# 创建原始提示模板
prompt_template = """您是一位专业的鲜花店文案撰写员。
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
{format_instructions}"""# 创建模型实例
model = OpenAI(model_name='text-davinci-003')# 导入结构化输出解析器和ResponseSchema
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
# 定义我们想要接收的响应模式
response_schemas = [ResponseSchema(name="description", description="鲜花的描述文案"),ResponseSchema(name="reason", description="问什么要这样写这个文案")
]
# 创建输出解析器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)# 获取格式指示
format_instructions = output_parser.get_format_instructions()
# 根据原始模板创建提示,同时在提示中加入输出解析器的说明
prompt = PromptTemplate.from_template(prompt_template, partial_variables={"format_instructions": format_instructions}) # 数据准备
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]# 创建一个空的DataFrame用于存储结果
import pandas as pd
df = pd.DataFrame(columns=["flower", "price", "description", "reason"]) # 先声明列名for flower, price in zip(flowers, prices):# 根据提示准备模型的输入input = prompt.format(flower_name=flower, price=price)# 获取模型的输出output = model(input)# 解析模型的输出(这是一个字典结构)parsed_output = output_parser.parse(output)# 在解析后的输出中添加“flower”和“price”parsed_output['flower'] = flowerparsed_output['price'] = price# 将解析后的输出添加到DataFrame中df.loc[len(df)] = parsed_output # 打印字典
print(df.to_dict(orient='records'))# 保存DataFrame到CSV文件
df.to_csv("flowers_with_descriptions.csv", index=False)输出
[{'flower': '玫瑰', 'price': '50', 'description': 'Luxuriate in the beauty of this 50 yuan rose, with its deep red petals and delicate aroma.', 'reason': 'This description emphasizes the elegance and beauty of the rose, which will be sure to draw attention.'},
{'flower': '百合', 'price': '30', 'description': '30元的百合,象征着坚定的爱情,带给你的是温暖而持久的情感!', 'reason': '百合是象征爱情的花,写出这样的描述能让顾客更容易感受到百合所带来的爱意。'},
{'flower': '康乃馨', 'price': '20', 'description': 'This beautiful carnation is the perfect way to show your love and appreciation. Its vibrant pink color is sure to brighten up any room!', 'reason': 'The description is short, clear and appealing, emphasizing the beauty and color of the carnation while also invoking a sense of love and appreciation.'}]
LangChain框架的好处:
模板管理、变量提取和检查、模型切换、输出解析
相关文章:
01|模型IO:输入提示、调用模型、解析输出
Model I/O 可以把对模型的使用过程拆解成三块,分别是输入提示(对应图中的Format)、调用模型(对应图中的Predict)和输出解析(对应图中的Parse)。这三块形成了一个整体,因此在LangCha…...
Android Studio实现内容丰富的安卓民宿酒店预订平台
获取源码请点击文章末尾QQ名片联系,源码不免费,尊重创作,尊重劳动 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端: 1.注册登录 2.查看民宿 3.民宿预订 4.民宿预订支付, 5.支付订单 6.评论管…...
SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现RIME-TCN-BiGRU-Attention霜冰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程…...
AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.03.10-2024.03.15
论文目录~ 1.3D-VLA: A 3D Vision-Language-Action Generative World Model2.PosSAM: Panoptic Open-vocabulary Segment Anything3.Anomaly Detection by Adapting a pre-trained Vision Language Model4.Introducing Routing Functions to Vision-Language Parameter-Efficie…...
路由器端口转发远程桌面控制:一电脑连接不同局域网的另一电脑
一、引言 路由器端口转发:指在路由器上设置一定的规则,将外部的数据包转发到内部指定的设备或应用程序。这通常需要对路由器进行一些配置,以允许外部网络访问内部网络中的特定服务和设备。端口转发功能可以实现多种应用场景,例如远…...
sparksession对象简介
什么是sparksession对象 spark2.0之后,sparksession对象是spark编码的统一入口对象,通常我们在rdd编程时,需要SparkContext对象作为RDD编程入口,但sparksession对象既可以作为RDD编程对象入口,在sparkcore编程中可以通…...
2、Java虚拟机之类的生命周期-连接(验证、准备、解析)
一、类的生命周期 连接阶段之验证 连接阶段的第一个环节是验证,验证的主要目的是检测Java字节码文件是否遵守了<Java虚拟机规范>中的约束。这个阶段一般是不需要程序员进行处理。 主要包含如下四个部分,具体详见<<Java虚拟机规范>>: 1、文件格…...
IPD集成产品开发:塑造企业未来竞争力的关键
随着市场竞争的日益激烈,企业对产品开发的要求也越来越高。如何在快速变化的市场环境中,既保证产品的批量生产效率,又满足客户的个性化需求,成为了企业面临的重要挑战。IPD(集成产品开发)模式,作…...
一个可商用私有化部署的基于JAVA的chat-gpt网站
目录 介绍一、核心功能1、智能对话2、AI绘画3、知识库4、一键思维导图5、应用广场6、GPTS 二、后台管理功能1、网站自定义2、多账号登录支持3、商品及会员系统4、模型配置5、兑换码生成6、三方商户用户打通 结语 介绍 java语言的私有化部署的商用网站还是比较少的 这里给大家介…...
nmcli --help(nmcli -h)nmcli文档、nmcli手册
文章目录 nmcli --helpOPTION解释OBJECT解释1. g[eneral]:查看NetworkManager的状态2. n[etworking]:启用或禁用网络3. r[adio]:查看无线电状态(例如,Wi-Fi)4. c[onnection]:列出所有的网络连接…...
SpringBoot集成WebService
1)添加依赖 <dependency><groupId>org.apache.cxf</groupId><artifactId>cxf-spring-boot-starter-jaxws</artifactId><version>3.3.4</version><exclusions><exclusion><groupId>javax.validation<…...
C++ Qt开发:QUdpSocket网络通信组件
Qt 是一个跨平台C图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍如何运用QUdpSocket组件实现基于UDP的网络通信…...
微信小程序小白易入门基础教程1
微信小程序 基本结构 页面配置 页面配置 app.json 中的部分配置,也支持对单个页面进行配置,可以在页面对应的 .json 文件来对本页面的表现进行配置。 页面中配置项在当前页面会覆盖 app.json 中相同的配置项(样式相关的配置项属于 app.js…...
D. Tandem Repeats? - 思维 + 双指针
题面 分析 s s s的范围很小,可以 O ( n 2 ) O(n^2) O(n2),在规定复杂度以内来完成枚举所有子串判断是否有满足条件的最大的子串,可以在第一层循环枚举子串长度 d d d,第二层循环枚举左右端点,通过双指针维护区间。对长…...
第十三届蓝桥杯省赛CC++ 研究生组
蓝桥杯2022年第十三届省赛真题-裁纸刀 蓝桥杯2022年第十三届省赛真题-灭鼠先锋 蓝桥杯2022年第十三届省赛真题-质因数个数 求个数,则只需要计数即可。求啥算啥,尽量不要搞多余操作 蓝桥杯2022年第十三届省赛真题-选数异或 蓝桥杯2022年第十三届省赛真题…...
Oracle中的commit与rollback
SQL语言分为五大类: DDL(数据定义语言:DataDefinitionLanguage) - Create、Alter、Drop 这些语句自动提交,无需用Commit提交。 DQL(数据查询语言:DataQueryLanguage) - Select 查询语句不存在是否提交问题。 DML(数据操纵语言:DataManipulationLangua…...
鸿蒙Harmony应用开发—ArkTS声明式开发(画布组件:OffscreenCanvasRenderingContext2D)
使用OffscreenCanvasRenderingContext2D在Canvas上进行离屏绘制,绘制对象可以是矩形、文本、图片等。离屏绘制是指将需要绘制的内容先绘制在缓存区,然后将其转换成图片,一次性绘制到canvas上,加快了绘制速度。 说明: 从…...
Redis如何实现主从复制?主从复制的作用是什么?Redis集群是如何工作的?它有哪些优点和缺点?
Redis如何实现主从复制?主从复制的作用是什么? Redis的主从复制是一种数据复制机制,其中一个Redis实例作为主节点(master),而其他Redis实例作为从节点(slave)。主从复制的实现过程如…...
【Numpy】(2)numpy对象和random模块
numpy.array对象 numpy.array 对象是 NumPy 库的核心,它提供了一种高效的方式来存储和操作同质数据类型的多维数组。每个 numpy.array 对象都有一系列的属性,这些属性提供了关于数组的重要信息。理解这些属性对于有效地使用 NumPy 和进行数据分析是非常…...
[QJS xmake] 非常简单地在Windows下编译QuickJS!
文章目录 前言准备C编译器xmake编译包 工程准备修改版本号第一遍编译第二遍编译效果 前言 quickjs是个很厉害的东西啊,我一直想编译一下的,奈何一直没成功。现在找了点时间成功编译了,写篇文章记录一下。当前版本:2024-1-13 应该…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
向量几何的二元性:叉乘模长与内积投影的深层联系
在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...
路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
