当前位置: 首页 > news >正文

【Unity】程序创建Mesh(二)MeshRenderer、光照、Probes探针、UV信息、法线信息

文章目录

  • 接上文
  • MeshRenderer(网格渲染器)
    • Materials(材质)
    • Material和Mesh对应
    • Lighting光照
    • Lightmapping
      • 材质中的光照
    • 光源类型
    • 阴影
    • 全局光照
    • Probes(探针)
    • Ray Tracing(光线追踪)
    • Additional Settings
  • UV信息
  • 法线信息
  • 最后


接上文

前面一篇文章【Unity】程序创建Mesh(一)Mesh网格、代码创建模型、顶点信息、三角形信息、MeshFilter、MeshRenderer讲了一部分使用代码创建网格的内容,这一节针对渲染相关的内容再做详解。

MeshRenderer(网格渲染器)

MeshRenderer是Unity中的一个组件,属于UnityEngine命名空间下的一个类,它继承自Renderer类。MeshRenderer的主要作用是渲染由MeshFilter或TextMesh插入的网格。它根据物体的Transform组件的定义位置,从网格过滤器(Mesh Filter)获取几何形状,并在该位置进行渲染。

MeshRenderer还有一些重要的属性,例如Cast Shadows(投射阴影),当这个属性被启用时,如果场景中有创建光照阴影的光源,MeshRenderer将会使对应的Mesh产生阴影。下面简单说明一下MeshRenderer的各项属性。
MeshRenderer设置

Materials(材质)

Materials是MeshRenderer中最重要的属性,它控制了网格的材质表现。通过修改MeshRenderer的Materials属性,我们可以改变物体的外观,如颜色、纹理、光照反应等。

具体来说,MeshRenderer的Materials属性是一个Material数组,这意味着一个MeshRenderer可以拥有多个材质。每个材质可以独立地应用到网格的不同部分,从而实现复杂的视觉效果。例如,一个游戏角色的身体部分可能使用一种材质,而武器或服装则使用另一种材质。

在Unity的编辑器中,你可以通过MeshRenderer组件的Inspector窗口来查看和编辑Materials属性。你可以添加、删除或重新排序材质,还可以为每个材质设置不同的Shader和纹理。

在代码中,你也可以通过脚本来操作MeshRenderer的Materials属性。例如,你可以创建一个新的Material,并将其添加到MeshRenderer的Materials数组中,或者修改现有材质的属性来改变物体的外观。

需要注意的是,当你修改MeshRenderer的Materials属性时,你是在修改该MeshRenderer的本地材质副本。如果你希望多个MeshRenderer共享相同的材质,你应该使用Material的实例化(Instance)而不是复制(Clone)。这样,当你修改共享材质的属性时,所有使用该材质的MeshRenderer都会受到影响。

此外,MeshRenderer的Materials属性与MeshFilter的mesh属性是相辅相成的。MeshFilter定义了物体的形状和结构,而MeshRenderer则通过Materials属性定义了这些形状和结构如何被渲染和表现出来。通过合理使用这两个组件,你可以创建出丰富多样的游戏世界和角色。
Materials材质设置

Material和Mesh对应

在Unity中,当你为MeshRenderer组件分配多个材质时,你需要确保这些材质与你的Mesh的子网格(Submeshes)正确对应。Mesh可以由多个子网格组成,每个子网格可以独立地应用一个材质。

为了将多个材质与Mesh的子网格对应起来,你需要按照以下步骤操作:

  1. 创建子网格:在你的Mesh中,使用SetTriangles方法为不同的部分设置三角形索引,从而创建子网格。每个子网格应包含一组连续的三角形索引。
int[] triangles0 = { /* 三角形索引数组,对应第一个子网格 */ };  
int[] triangles1 = { /* 三角形索引数组,对应第二个子网格 */ };  
// ...更多子网格  mesh.SetTriangles(triangles0, 0); // 设置第一个子网格  
// 设置第二个子网格,注意第二个参数是上一个子网格的三角形数量  
// 第三个参数submeshIndex用于指定子网格的索引。索引从0开始,每个子网格的索引必须唯一。
mesh.SetTriangles(triangles1, triangles0.Length, submeshIndex: 1); 
// ...为更多子网格设置三角形
  1. 分配材质:在你的MeshRenderer组件中,为Materials属性分配一个与你的子网格数量相同的材质数组。
Material[] materials = new Material[mesh.subMeshCount];  
materials[0] = new Material(Shader.Find("SomeShader")); // 为第一个子网格分配材质  
materials[1] = new Material(Shader.Find("AnotherShader")); // 为第二个子网格分配材质  
// ...为更多子网格分配材质  meshRenderer.materials = materials; // 将材质数组分配给MeshRenderer

这里mesh.subMeshCount将返回你的Mesh中子网格的数量,你需要确保分配的材质数组长度与子网格数量相匹配。

  1. 确保索引对应:重要的是要确保你设置的三角形索引与子网格的材质分配正确对应。如果你错误地分配了材质,或者三角形索引与子网格不对应,渲染结果可能会出现问题。
  2. 更新Mesh:在修改了Mesh的结构或材质后,确保调用mesh.RecalculateBounds()来更新Mesh的边界信息,这对于正确的渲染和碰撞检测很重要。
mesh.RecalculateBounds();

通过以上步骤,你可以将多个材质与你创建的Mesh的子网格对应起来,从而实现复杂的材质和渲染效果。这对于创建具有不同材质部分的物体(如角色模型的不同部位使用不同纹理)非常有用。

Lighting光照

MeshRenderer中提供了对于 Lighting(光照)的设置功能,它与场景中的光源(Lights)以及材质(Materials)相互作用,以产生光照效果。
材质定义了物体如何与光源进行交互。材质中的Shader决定了如何计算光照。例如,一个材质可能使用Phong Shading模型来计算光照,而另一个可能使用Lambert Shading。Shader代码决定了光照如何影响物体的颜色、亮度、高光等。

光照的设置内容如下:
光照设置

Lightmapping

如果勾选了 Lighting 中的 Contribute Global Illuminatior 选项,MeshRenderer 中就会出现对于 Lightmapping 的相关设置内容。
Lightmapping
Lightmapping设置内容如下:
Lightmapping设置

材质中的光照

在材质中可以设置多种光照属性,如:

  • Albedo(反照率):物体的基础颜色。
  • Metallic(金属度):物体表面的金属程度,影响高光反射。
  • Smoothness(光滑度):影响高光的大小和强度。
  • Emissive(自发光):物体自身发出的颜色,不受光源影响。

这些属性在Shader中用于计算光照结果。

光源类型

Unity支持多种光源类型,每种类型都有其独特的光照属性:

  • Directional Light(方向光):模拟来自无限远处的光源,如太阳。它有一个方向和一个颜色。
  • Point Light(点光源):从一个点向所有方向发射光线的光源。它有一个位置、颜色和范围。
  • Spot Light(聚光灯):从一个点发射光线,但只在一个圆锥体内照亮物体。它有一个位置、颜色、范围和圆锥体的角度。
  • Area Light(区域光):模拟一个具有面积的光源,可以产生更柔和的阴影。

阴影

阴影是光照系统中的一个重要部分。在Unity中,你可以为光源启用阴影,并选择阴影的类型(如硬阴影或软阴影)。阴影的渲染质量和性能消耗取决于你选择的阴影设置。

MeshRenderer 会根据场景中的光源和物体的材质来计算阴影。如果物体的材质或光源没有启用阴影,那么该物体就不会产生或接收阴影。

全局光照

全局光照(Global Illumination, GI)考虑了场景中所有光源对物体的间接照明影响。在Unity中,你可以使用实时全局光照(Realtime GI)或烘焙全局光照(Baked GI)来模拟这种效果。MeshRenderer 会与这些全局光照系统相互作用,以产生更真实的光照效果。

Probes(探针)

在Unity中,MeshRenderer中的Probes主要指的是光照探针(Light Probes)反射探针(Reflection Probes),它们用于在场景中获取光照和反射信息,以增强渲染的真实感。

  • 光照探针用于在光照计算中获取场景中的光照信息。它们能够捕捉场景中的光照数据,并在运行时为物体提供光照信息。这样,即使物体在场景中移动,也能根据最近的光照探针进行光照计算,实现平滑的光照过渡。光照探针的设置可以在MeshRenderer组件中进行调整,默认情况下,所有游戏对象都会使用光照探针,并在场景中改变位置时在最近的探针之间进行混合。
  • 反射探针则用于在反射计算中获取场景中的反射信息。它们能够捕捉场景中的环境反射数据,使得物体能够呈现出更真实的反射效果。通过反射探针,游戏开发者可以在物体表面模拟出周围环境的倒影和反射,提升游戏画面的质感。

在使用光照探针和反射探针时,开发者需要注意正确设置MeshRenderer组件的相关参数,以确保探针能够正确工作。此外,根据场景的具体需求和性能考虑,开发者还需要合理选择探针的数量和分布,以达到最佳的光照和反射效果。

探针的设置内容如下:
在这里插入图片描述

Ray Tracing(光线追踪)

在使用High Definition Render Pipeline(HDRP)管线时,在MeshRenderer中可以设置光追模式,分别为:

  • Off:关闭;
  • Static:静态光追;
  • Dynamic Transform(默认):动态变换;
  • Dynamic Geometry:动态几何。

关于HDRP的详细内容,可以直接到 Unity 手册中去查看,内容还是比较全面的,这里附上链接:高清渲染管线 (High Definition Render Pipeline)用户手册

Additional Settings

额外属性设置:
在这里插入图片描述

UV信息

// 设置网格的UV坐标(可选,但通常用于纹理映射)
Vector2[] uvs = new Vector2[]
{new Vector2(0, 0),new Vector2(1, 0),new Vector2(1, 1),new Vector2(0, 1)
};
mesh.uv = uvs;

设置Mesh的UV坐标的基本原理主要是为了实现纹理映射,确保纹理能够正确地贴合到三维模型的表面上。UV坐标是一个二维坐标系,其中U代表横向(水平)坐标,V代表纵向(垂直)坐标。在三维建模中,每个顶点都可以被赋予UV坐标,这些坐标用于将纹理映射到多边形表面上。

UV坐标的取值范围通常在0到1之间,包括0和1两个端点。这样无论图像的像素分辨率是多少,UV坐标都可以换算成贴图的像素坐标。通过将纹理图像的每个像素与模型表面的顶点进行对应,我们可以实现纹理的精确映射。

在设置UV坐标时,需要考虑到模型的几何形状和纹理的特点。不同的模型部分可能需要使用不同的UV坐标,以确保纹理能够正确地贴合到模型的各个表面上。同时,还需要注意UV坐标的连续性和平滑性,以避免在纹理映射时出现明显的接缝或拉伸现象。

除了基本的UV坐标设置外,还可以使用一些高级技术来优化纹理映射效果,比如UV展开和UV打包。UV展开是将三维模型的表面展开到二维平面上,以便更好地编辑和调整UV坐标。UV打包则是将多个模型的UV坐标合并到一个纹理图中,以提高纹理的利用效率和渲染性能。

总之,设置Mesh的UV坐标是实现纹理映射的关键步骤之一,需要根据模型的几何形状和纹理特点进行精确的设置和调整。

法线信息

// 设置网格的法线(可选,但通常用于光照计算)
Vector3[] normals = new Vector3[]
{Vector3.up,Vector3.up,Vector3.up,Vector3.up
};
mesh.normals = normals;

在Unity中使用代码来创建Mesh并指定法线信息时,需要提供一个Vector3数组,数组中每个元素对应一个Mesh顶点(一一对应),用于指定每个顶点的法线方向。如果你的Mesh是由平滑的面组成,你可能还需要计算平滑法线,这通常涉及到对相邻面的法线进行平均。

最后

关于UV和法线相关的更细节的内容,我会在渲染章节再进行细致的学习和记录(详见文档下方的目录),欢迎大家一起学习。


更多内容请查看总目录【Unity】Unity学习笔记目录整理

相关文章:

【Unity】程序创建Mesh(二)MeshRenderer、光照、Probes探针、UV信息、法线信息

文章目录 接上文MeshRenderer(网格渲染器)Materials(材质)Material和Mesh对应Lighting光照Lightmapping材质中的光照 光源类型阴影全局光照Probes(探针)Ray Tracing(光线追踪)Additi…...

每日一练:LeeCode-167. 两数之和 II - 输入有序数组【双指针】

给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < index2 < numbers.…...

性能优化(CPU优化技术)-NEON指令详解

原文来自ARM SIMD 指令集&#xff1a;NEON 简介 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&#xff09;开发基础教程 &#x1f380;CSDN主页 发狂的小花 &#x1f304;人生秘诀&#xf…...

服务器硬件基础知识和云服务器的选购技巧

概述 服务器硬件基础知识涵盖了构成服务器的关键硬件组件和技术&#xff0c;这些组件和技术对于服务器的性能、稳定性和可用性起着至关重要的作用。其中包括中央处理器&#xff08;CPU&#xff09;作为服务器的计算引擎&#xff0c;内存&#xff08;RAM&#xff09;用于数据临…...

深度学习PyTorch 之 transformer-中文多分类

transformer的原理部分在前面基本已经介绍完了&#xff0c;接下来就是代码部分&#xff0c;因为transformer可以做的任务有很多&#xff0c;文本的分类、时序预测、NER、文本生成、翻译等&#xff0c;其相关代码也会有些不同&#xff0c;所以会分别进行介绍 但是对于不同的任务…...

STC 51单片机烧录程序遇到一直检测单片机的问题

准备工作 一&#xff0c;需要一个USB-TTL的下载器 &#xff0c;并安装好对应的驱动程序 二、对应的下载软件&#xff0c;stc软件需要官方的软件&#xff08;最好是最新的&#xff0c;个人遇到旧的下载软件出现问题&#xff09; 几种出现一直检测的原因 下载软件图标&#xf…...

后端系统开发之——接口参数校验

今天难得双更&#xff0c;大家点个关注捧个场 原文地址&#xff1a;后端系统开发之——接口参数校验 - Pleasure的博客 下面是正文内容&#xff1a; 前言 在上一篇文章中提到了接口的开发&#xff0c;虽然是完成了&#xff0c;但还是缺少一些细节——传入参数的校验。 即用户…...

IDEA 配置阿里规范检测

IDEA中安装插件 配置代码风格检查规范 使用代码风格检测 在代码类中&#xff0c;右键 然后会给出一些不符合规范的修改建议&#xff1a; 保存代码时自动格式化代码 安装插件&#xff1a; 配置插件&#xff1a;...

数据仓库系列总结

一、数据仓库架构 1、数据仓库的概念 数据仓库&#xff08;Data Warehouse&#xff09;是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合&#xff0c;用于支持管理决策。 数据仓库通常包含多个来源的数据&#xff0c;这些数据按照主题进行组织和存储&#x…...

gitlab runner没有内网的访问权限应该怎么解决

如果你的GitLab Runner没有内网访问权限&#xff0c;但你需要访问内部资源&#xff08;如私有仓库或其他服务&#xff09;&#xff0c;你可以考虑以下几种方法&#xff1a; VPN 或 SSH 隧道&#xff1a; 在允许的情况下&#xff0c;通过VPN或SSH隧道连接到内部网络。这将允许Gi…...

el-tree 设置默认展开指定层级

el-tree默认关闭所有选项&#xff0c;但是有添加或者编辑删除的情况下&#xff0c;需要刷新接口&#xff0c;此时会又要关闭所有选项&#xff1b; 需求&#xff1a;在编辑时、添加、删除 需要将该内容默认展开 <el-tree :default-expanded-keys"expandedkeys":da…...

python便民超市管理系统flask-django-nodejs-php

随着人们生活节奏的加快&#xff0c;以前传统的购物方式发生了巨大的改变&#xff0c;以前一个超市要想经营好自己的门店&#xff0c;每天都要忙着记账出账&#xff0c;尤其是出库入库统计&#xff0c;如果忙中出乱&#xff0c;可能导致今天所有的营业流水&#xff0c;要重新换…...

HarmonyOS — BusinessError 不能被 JSON.stringify转换

在鸿蒙中BusinessError 继承于Error&#xff0c;而在JavaScript&#xff08;以及TypeScript&#xff0c;因为它是JavaScript的超集&#xff09;中&#xff0c;Error 对象包含一些不能被 JSON.stringify 直接序列化的属性。JSON.stringify 方法会将一个JavaScript对象或者值转换…...

JupyterNotebook 如何切换使用的虚拟环境kernel

在Jupyter Notebook中&#xff0c;如果需要修改使用的虚拟环境Kernel&#xff1a; 首先&#xff0c;需要确保虚拟环境已经安装conda上【conda基本操作】 打开Jupyter Notebook。 在Jupyter Notebook的顶部菜单中&#xff0c;选择 “New” 在弹出的窗口中&#xff0c;列出了…...

预防GPT-3和其他复杂语言模型中的“幻觉”

标题&#xff1a;预防GPT-3和其他复杂语言模型中的“幻觉” 正文&#xff1a; “假新闻”的一个显著特征是它经常在事实正确信息的环境中呈现虚假信息&#xff0c;通过一种文学渗透的方式&#xff0c;使不真实的数据获得感知权威&#xff0c;这是半真半假力量令人担忧的展示。…...

从源码解析AQS

前置概念 要彻底了解AQS的底层实现就必须要了解一下线程相关的知识。 包括voliatevoliate 我们使用翻译软件翻译一下volatile&#xff0c;会发现它有以下几个意思&#xff1a;易变的;无定性的;无常性的;可能急剧波动的;不稳定的;易恶化的;易挥发的;易发散的。这也正式使用vola…...

基于Spring Boot的云上水果超市的设计与实现

摘 要 伴随着我国社会的发展&#xff0c;人民生活质量日益提高。于是对云上水果超市进行规范而严格是十分有必要的&#xff0c;所以许许多多的信息管理系统应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套云上水果超市&#xff0c;帮助商家进行…...

游戏引擎中的动画基础

一、动画技术简介 视觉残留理论 - 影像在我们的视网膜上残留1/24s。 游戏中动画面临的挑战&#xff1a; 交互&#xff1a;游戏中的玩家动画需要和场景中的物体进行交互。实时&#xff1a;最慢需要在1/30秒内算完所有的场景渲染和动画数据。&#xff08;可以用动画压缩解决&am…...

springboot3快速入门案例2024最新版

前边 springboot3 系统要求 技术&工具版本&#xff08;or later&#xff09;maven3.6.3 or later 3.6.3 或更高版本Tomcat10.0Servlet9.0JDK17 SpringBoot的主要目标是&#xff1a; 为所有 Spring 开发提供更快速、可广泛访问的入门体验。开箱即用&#xff0c;设置合理的…...

软考 系统架构设计师系列知识点之系统性能(1)

所属章节&#xff1a; 第2章. 计算机系统基础知识 第9节. 系统性能 系统性能是一个系统提供给用户的所有性能指标的集合。它既包括硬件性能&#xff08;如处理器主频、存储器容量、通信带宽等&#xff09;和软件性能&#xff08;如上下文切换、延迟、执行时间等&#xff09;&a…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...