当前位置: 首页 > news >正文

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言,采用经典差分进化算法(DE)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。

目录

  • 往期优质资源
  • 1. 适用场景
  • 2. 代码调整
  • 3. 求解结果
  • 4. 代码片段
  • 参考

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 问题与算法,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地

2. 代码调整


与CVRP问题相比,SDVRP问题允许客户需求大于车辆容量。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆对客户进行服务,也就是需要对客户的需求进行拆分。关于如何进行拆分一般有两种方式:

  • 先验拆分策略:提前制定策略对客户的需求(尤其是大于车辆容量的客户需求)进行分解,将SDVRP问题转化为CVRP问题
  • 过程拆分策略:在车辆服务过程中对客户需求进行动态拆分

本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

3. 求解结果


(1)收敛曲线
在这里插入图片描述

(2)车辆路径

在这里插入图片描述

4. 代码片段


(1)数据结构

# 数据结构:解
class Sol():def __init__(self):self.node_no_seq = None # 节点id有序排列self.obj = None # 目标函数self.fitness = None  # 适应度self.route_list = None # 车辆路径集合self.route_distance_list = None  # 车辆路径长度集合
# 数据结构:网络节点
class Node():def __init__(self):self.id = 0 # 节点idself.x_coord = 0 # 节点平面横坐标self.y_coord = 0 # 节点平面纵坐标self.demand = 0 # 节点需求
# 数据结构:全局参数
class Model():def __init__(self):self.best_sol = None # 全局最优解self.demand_id_list = [] # 需求节点集合self.demand_dict = {}self.sol_list = [] # 解的集合self.depot = None # 车场节点self.number_of_demands = 0 # 需求节点数量self.vehicle_cap = 0 # 车辆最大容量self.distance_matrix = {} # 节点距离矩阵self.demand_id_list_ = [] # 经先验需求分割后的节点集合self.demand_dict_ = {} # 需求分割后的节点需求集合self.distance_matrix_ = {}  # 原始节点id间的距离矩阵self.mapping = {}  # 需求分割前后的节点对应关系self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)self.popsize = 100 # 种群规模self.Cr=0.5 # 差分交叉概率self.F=0.5 # 差分变异概率

(2)距离矩阵

# 初始化参数
def cal_distance_matrix(model):for i in model.demand_id_list:for j in model.demand_id_list:d=math.sqrt((model.demand_dict[i].x_coord-model.demand_dict[j].x_coord)**2+(model.demand_dict[i].y_coord-model.demand_dict[j].y_coord)**2)model.distance_matrix[i,j]=max(d,0.0001) if i != j else ddist = math.sqrt((model.demand_dict[i].x_coord - model.depot.x_coord) ** 2 + (model.demand_dict[i].y_coord - model.depot.y_coord) ** 2)model.distance_matrix[i, model.depot.id] = distmodel.distance_matrix[model.depot.id, i] = dist

(3)邻域

#差分变异;变异策略:DE/rand/1/bin
def muSol(model,v1):x1=model.sol_list[v1].node_no_seqwhile True:v2=random.randint(0,model.popsize-1)if v2!=v1:breakwhile True:v3=random.randint(0,model.popsize-1)if v3!=v2 and v3!=v1:breakx2=model.sol_list[v2].node_no_seqx3=model.sol_list[v3].node_no_seqmu_x=[min(int(x1[i]+model.F*(x2[i]-x3[i])),model.number_of_demands-1) for i in range(model.number_of_demands) ]return mu_x
#差分交叉
def crossSol(model,vx,vy):cro_x=[]for i in range(model.number_of_demands):if random.random()<model.Cr:cro_x.append(vy[i])else:cro_x.append(vx[i])cro_x=adjustRoutes(cro_x,model)return cro_x

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

相关文章:

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言&#xff0c;采用经典差分进化算法&#xff08;DE&#xff09;对 需求拆分车辆路径规划问题&#xff08;SDVRP&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整3. 求解结果4. 代码片段参考 往期优质资源 经过一年多的创作&#xff0c;目前已经成…...

什么是神经网络?

一、什么是神经网络&#xff1f; 神经网络又称人工神经网络&#xff0c;是一种基于人脑功能模型的计算架构&#xff0c;因此称之为“神经”。神经网络由一组称为“节点”的处理单元组成。这些节点相互传递数据&#xff0c;就像大脑中的神经元相互传递电脉冲一样。 神经网络在…...

基于Python的图形用户界面设计及应用

基于Python的图形用户界面设计及应用 摘要&#xff1a;随着信息技术的飞速发展&#xff0c;图形用户界面&#xff08;GUI&#xff09;已成为现代软件不可或缺的一部分。Python作为一种简洁、易读且功能强大的编程语言&#xff0c;提供了多种GUI开发工具包&#xff0c;如Tkinte…...

python网络爬虫实战教学——urllib的使用(1)

文章目录 专栏导读1、前言2、urllib的使用3、发送请求3.1 urlopen3.2 request 专栏导读 ✍ 作者简介&#xff1a;i阿极&#xff0c;CSDN 数据分析领域优质创作者&#xff0c;专注于分享python数据分析领域知识。 ✍ 本文录入于《python网络爬虫实战教学》&#xff0c;本专栏针对…...

简述归并排序

归并排序 特点&#xff1a; 高效稳定时间复杂度最佳/平均/最差&#xff1a; O(N log N) 递归算法有专门的公式来计算时间复杂度 空间复杂度 O(N) 因为开辟了临时的tem_arr数组 一个静态的演示图(from leetcode) 一个动态的演示图 合并实现使用merge函数 inline void merge(v…...

HTML实现卷轴动画完整源码附注释

动画效果截图 页面的html结构代码 <!DOCTYPE html> <html> <head lang=...

sh: 1: dtc: not found

报错&#xff1a; bl31.bin size: 41632 u-boot-nodtb.bin size: 815816 ai_robot.dtb size: 30552 ./mkimage_uboot -E -p 0x3000 -f u-boot-ai-robot.its u-boot-ai-robot.itb sh: 1: dtc: not found ./mkimage_uboot: Cant open u-boot-ai-robot.itb.tmp: No such file …...

laravel 表单验证的 exists、unique 去除软删除字段的校验

use Illuminate\Validation\Rule; exists 去除软删除字段的校验 $validator \Validator::make($data, [phone_new > [Rule::exists(users, phone)->whereNull(deleted_at),]], [phone_new.exists > 手机号不存在,]);unique 去除软删除字段的校验 // 新增 email>r…...

【PHP + 代码审计】函数详解2.0

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…...

宠物智能喂食机方案设计

我们都知道&#xff0c;现如今养宠物的人群已经很多了&#xff0c;主要是青年人居多&#xff0c;他们在独自漂泊的在外的工作&#xff0c;免不了情感泛滥&#xff0c;养一些小动物也是在预料之中。但由于工作或者其他各种因数&#xff0c;养宠人不可时时刻刻在家&#xff0c;对…...

测试直播打赏需要考虑哪些测试要点?

1.功能测试&#xff1a; 1、检查打赏功能是否正确 &#xff1a;检查打赏操作是否可以正常进行 2、 赞赏余额是否正确&#xff1a; 检查赞赏者和被赞赏者的余额是否正确 3、赞赏交易记录是否正确&#xff1a; 检查赞赏者和被赞赏者的交易记录是否正确&#xff1b; 4、检查赞…...

Python练习(续)

练习1:用户登录注册案例 import sysidname {test:123456}print(""" 英雄联盟商城登录界面~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~1. 用户登录2. 新用户注册3. 退出系统~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ …...

发布镜像到阿里云仓库

发布上一篇Dockerfile实战-自定义的centos镜像。 1、登录阿里云 2、找到容器镜像服务 3、创建命令空间 4、创建镜像仓库 5、点击进入这个镜像仓库&#xff0c;可以看到所有的信息 6、根据操作指南测试推送发布 6.1登录阿里云 [rootzhoujunru home]# docker login --usernam…...

web蓝桥杯真题:灯的颜色变化

代码及注释&#xff1a; // TODO&#xff1a;完善此函数 显示红色颜色的灯 function red() { //将红色图片元素display显示出来&#xff0c;其他隐藏document.querySelector(#defaultlight).style.display nonedocument.querySelector(#redlight).style.display inline-b…...

通过docker容器安装zabbix6.4.12图文详解(监控服务器docker容器)

目录 一、相关环境及镜像二、zabbix-server服务端部署1.使用docker创建zabbix-server服务端(1). 创建专用于Zabbix组件容器的网络(2). 启动空的MySQL服务器实例(3). 启动Zabbix Java网关实例(4). 启动Zabbix服务器实例并将实例与创建的MySQL服务器实例链接(5). 启动Zabbix Web界…...

算法打卡day21|回溯法篇01|理论知识,Leetcode 77.组合

回溯法理论知识 回溯法也可以叫做回溯搜索法&#xff0c;它是一种搜索的方式。回溯是递归的副产品&#xff0c;只要有递归就会有回溯。所以回溯函数也就是递归函数&#xff0c;指的都是一个函数。 回溯法的效率 回溯法并不是什么高效的算法。因为回溯的本质是穷举&#xff0c;…...

C++ 输入输出

输入 1.1 cin >> str; 遇到“空格”、“TAB”、“回车”就停止 string str; cin >> str;1.2 getline(cin, str) 可用于输入一行数据&#xff0c;遇到空格不会停止&#xff0c;读入string字符中 便于读取一行一行的数据 while(getline(cin, str)){if(str "EN…...

FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+HLS图像缩放+多路视频拼接,提供4套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博主所有FPGA工程项目-->汇总目录本博已有的 SDI 编解码方案本方案的SDI接收发送本方案的SDI接收图像缩放应用本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收OSD动态字符叠加输出应用本方案的SDI接收HLS…...

【gpt实践】50个提升工作效率的GPT指令

收集整理了50个工作不同场景中可能会用到的gpt指令&#xff0c;希望对大家有帮助。 1. 用「532规则」定制月度宣传规划 提示&#xff1a;“对于我的 [产品/服务] 在 [社交媒体平台上 ]定位 [我的目标受众]”&#xff0c;使用 5-3-2 规则制定 1 个月的社交媒体内容计划。” Pro…...

基于Springboot的高校竞赛管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的高校竞赛管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...