当前位置: 首页 > news >正文

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言,采用经典差分进化算法(DE)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。

目录

  • 往期优质资源
  • 1. 适用场景
  • 2. 代码调整
  • 3. 求解结果
  • 4. 代码片段
  • 参考

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 问题与算法,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地

2. 代码调整


与CVRP问题相比,SDVRP问题允许客户需求大于车辆容量。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆对客户进行服务,也就是需要对客户的需求进行拆分。关于如何进行拆分一般有两种方式:

  • 先验拆分策略:提前制定策略对客户的需求(尤其是大于车辆容量的客户需求)进行分解,将SDVRP问题转化为CVRP问题
  • 过程拆分策略:在车辆服务过程中对客户需求进行动态拆分

本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

3. 求解结果


(1)收敛曲线
在这里插入图片描述

(2)车辆路径

在这里插入图片描述

4. 代码片段


(1)数据结构

# 数据结构:解
class Sol():def __init__(self):self.node_no_seq = None # 节点id有序排列self.obj = None # 目标函数self.fitness = None  # 适应度self.route_list = None # 车辆路径集合self.route_distance_list = None  # 车辆路径长度集合
# 数据结构:网络节点
class Node():def __init__(self):self.id = 0 # 节点idself.x_coord = 0 # 节点平面横坐标self.y_coord = 0 # 节点平面纵坐标self.demand = 0 # 节点需求
# 数据结构:全局参数
class Model():def __init__(self):self.best_sol = None # 全局最优解self.demand_id_list = [] # 需求节点集合self.demand_dict = {}self.sol_list = [] # 解的集合self.depot = None # 车场节点self.number_of_demands = 0 # 需求节点数量self.vehicle_cap = 0 # 车辆最大容量self.distance_matrix = {} # 节点距离矩阵self.demand_id_list_ = [] # 经先验需求分割后的节点集合self.demand_dict_ = {} # 需求分割后的节点需求集合self.distance_matrix_ = {}  # 原始节点id间的距离矩阵self.mapping = {}  # 需求分割前后的节点对应关系self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)self.popsize = 100 # 种群规模self.Cr=0.5 # 差分交叉概率self.F=0.5 # 差分变异概率

(2)距离矩阵

# 初始化参数
def cal_distance_matrix(model):for i in model.demand_id_list:for j in model.demand_id_list:d=math.sqrt((model.demand_dict[i].x_coord-model.demand_dict[j].x_coord)**2+(model.demand_dict[i].y_coord-model.demand_dict[j].y_coord)**2)model.distance_matrix[i,j]=max(d,0.0001) if i != j else ddist = math.sqrt((model.demand_dict[i].x_coord - model.depot.x_coord) ** 2 + (model.demand_dict[i].y_coord - model.depot.y_coord) ** 2)model.distance_matrix[i, model.depot.id] = distmodel.distance_matrix[model.depot.id, i] = dist

(3)邻域

#差分变异;变异策略:DE/rand/1/bin
def muSol(model,v1):x1=model.sol_list[v1].node_no_seqwhile True:v2=random.randint(0,model.popsize-1)if v2!=v1:breakwhile True:v3=random.randint(0,model.popsize-1)if v3!=v2 and v3!=v1:breakx2=model.sol_list[v2].node_no_seqx3=model.sol_list[v3].node_no_seqmu_x=[min(int(x1[i]+model.F*(x2[i]-x3[i])),model.number_of_demands-1) for i in range(model.number_of_demands) ]return mu_x
#差分交叉
def crossSol(model,vx,vy):cro_x=[]for i in range(model.number_of_demands):if random.random()<model.Cr:cro_x.append(vy[i])else:cro_x.append(vx[i])cro_x=adjustRoutes(cro_x,model)return cro_x

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

相关文章:

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言&#xff0c;采用经典差分进化算法&#xff08;DE&#xff09;对 需求拆分车辆路径规划问题&#xff08;SDVRP&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整3. 求解结果4. 代码片段参考 往期优质资源 经过一年多的创作&#xff0c;目前已经成…...

什么是神经网络?

一、什么是神经网络&#xff1f; 神经网络又称人工神经网络&#xff0c;是一种基于人脑功能模型的计算架构&#xff0c;因此称之为“神经”。神经网络由一组称为“节点”的处理单元组成。这些节点相互传递数据&#xff0c;就像大脑中的神经元相互传递电脉冲一样。 神经网络在…...

基于Python的图形用户界面设计及应用

基于Python的图形用户界面设计及应用 摘要&#xff1a;随着信息技术的飞速发展&#xff0c;图形用户界面&#xff08;GUI&#xff09;已成为现代软件不可或缺的一部分。Python作为一种简洁、易读且功能强大的编程语言&#xff0c;提供了多种GUI开发工具包&#xff0c;如Tkinte…...

python网络爬虫实战教学——urllib的使用(1)

文章目录 专栏导读1、前言2、urllib的使用3、发送请求3.1 urlopen3.2 request 专栏导读 ✍ 作者简介&#xff1a;i阿极&#xff0c;CSDN 数据分析领域优质创作者&#xff0c;专注于分享python数据分析领域知识。 ✍ 本文录入于《python网络爬虫实战教学》&#xff0c;本专栏针对…...

简述归并排序

归并排序 特点&#xff1a; 高效稳定时间复杂度最佳/平均/最差&#xff1a; O(N log N) 递归算法有专门的公式来计算时间复杂度 空间复杂度 O(N) 因为开辟了临时的tem_arr数组 一个静态的演示图(from leetcode) 一个动态的演示图 合并实现使用merge函数 inline void merge(v…...

HTML实现卷轴动画完整源码附注释

动画效果截图 页面的html结构代码 <!DOCTYPE html> <html> <head lang=...

sh: 1: dtc: not found

报错&#xff1a; bl31.bin size: 41632 u-boot-nodtb.bin size: 815816 ai_robot.dtb size: 30552 ./mkimage_uboot -E -p 0x3000 -f u-boot-ai-robot.its u-boot-ai-robot.itb sh: 1: dtc: not found ./mkimage_uboot: Cant open u-boot-ai-robot.itb.tmp: No such file …...

laravel 表单验证的 exists、unique 去除软删除字段的校验

use Illuminate\Validation\Rule; exists 去除软删除字段的校验 $validator \Validator::make($data, [phone_new > [Rule::exists(users, phone)->whereNull(deleted_at),]], [phone_new.exists > 手机号不存在,]);unique 去除软删除字段的校验 // 新增 email>r…...

【PHP + 代码审计】函数详解2.0

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…...

宠物智能喂食机方案设计

我们都知道&#xff0c;现如今养宠物的人群已经很多了&#xff0c;主要是青年人居多&#xff0c;他们在独自漂泊的在外的工作&#xff0c;免不了情感泛滥&#xff0c;养一些小动物也是在预料之中。但由于工作或者其他各种因数&#xff0c;养宠人不可时时刻刻在家&#xff0c;对…...

测试直播打赏需要考虑哪些测试要点?

1.功能测试&#xff1a; 1、检查打赏功能是否正确 &#xff1a;检查打赏操作是否可以正常进行 2、 赞赏余额是否正确&#xff1a; 检查赞赏者和被赞赏者的余额是否正确 3、赞赏交易记录是否正确&#xff1a; 检查赞赏者和被赞赏者的交易记录是否正确&#xff1b; 4、检查赞…...

Python练习(续)

练习1:用户登录注册案例 import sysidname {test:123456}print(""" 英雄联盟商城登录界面~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~1. 用户登录2. 新用户注册3. 退出系统~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ …...

发布镜像到阿里云仓库

发布上一篇Dockerfile实战-自定义的centos镜像。 1、登录阿里云 2、找到容器镜像服务 3、创建命令空间 4、创建镜像仓库 5、点击进入这个镜像仓库&#xff0c;可以看到所有的信息 6、根据操作指南测试推送发布 6.1登录阿里云 [rootzhoujunru home]# docker login --usernam…...

web蓝桥杯真题:灯的颜色变化

代码及注释&#xff1a; // TODO&#xff1a;完善此函数 显示红色颜色的灯 function red() { //将红色图片元素display显示出来&#xff0c;其他隐藏document.querySelector(#defaultlight).style.display nonedocument.querySelector(#redlight).style.display inline-b…...

通过docker容器安装zabbix6.4.12图文详解(监控服务器docker容器)

目录 一、相关环境及镜像二、zabbix-server服务端部署1.使用docker创建zabbix-server服务端(1). 创建专用于Zabbix组件容器的网络(2). 启动空的MySQL服务器实例(3). 启动Zabbix Java网关实例(4). 启动Zabbix服务器实例并将实例与创建的MySQL服务器实例链接(5). 启动Zabbix Web界…...

算法打卡day21|回溯法篇01|理论知识,Leetcode 77.组合

回溯法理论知识 回溯法也可以叫做回溯搜索法&#xff0c;它是一种搜索的方式。回溯是递归的副产品&#xff0c;只要有递归就会有回溯。所以回溯函数也就是递归函数&#xff0c;指的都是一个函数。 回溯法的效率 回溯法并不是什么高效的算法。因为回溯的本质是穷举&#xff0c;…...

C++ 输入输出

输入 1.1 cin >> str; 遇到“空格”、“TAB”、“回车”就停止 string str; cin >> str;1.2 getline(cin, str) 可用于输入一行数据&#xff0c;遇到空格不会停止&#xff0c;读入string字符中 便于读取一行一行的数据 while(getline(cin, str)){if(str "EN…...

FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+HLS图像缩放+多路视频拼接,提供4套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博主所有FPGA工程项目-->汇总目录本博已有的 SDI 编解码方案本方案的SDI接收发送本方案的SDI接收图像缩放应用本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收OSD动态字符叠加输出应用本方案的SDI接收HLS…...

【gpt实践】50个提升工作效率的GPT指令

收集整理了50个工作不同场景中可能会用到的gpt指令&#xff0c;希望对大家有帮助。 1. 用「532规则」定制月度宣传规划 提示&#xff1a;“对于我的 [产品/服务] 在 [社交媒体平台上 ]定位 [我的目标受众]”&#xff0c;使用 5-3-2 规则制定 1 个月的社交媒体内容计划。” Pro…...

基于Springboot的高校竞赛管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的高校竞赛管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...