[C++]20:unorderedset和unorderedmap结构和封装。
unorderedset和unorderedmap结构和封装
- 一.哈希表:
- 1.直接定址法:
- 2.闭散列的开放定址法:
- 1.基本结构:
- 2.insert
- 3.find
- 4.erase
- 5.补充:
- 6.pair<k,v> k的数据类型:
- 3.开散列的拉链法/哈希桶:
- 1.基本结构:
- 2.insert
- 1.正常插入:
- 2.考虑扩容
- 3.find
- 4.erase
- 5.数据计算观察:
- 二.unordered_set和unordered_map的封装:
- 1.unordered_set
- 1.基本结构:
- 2.插入:
- 3.迭代器:
- 4.find
- 5.整体代码:
- 2.unorder_map
- 1.基本结构:
- 2.插入:
- 3.迭代器:
- 4.find
- 5.operator[]重载:
- 6.整体代码:
- 7.补充代码:
- 3.HashTable
- 1.find查找:
- 2.迭代器:
- 1.基本结构:
- 2.operator++
- 3.整体代码:
- 3.插入:
- 1.bool返回的插入:
- 2.重载operator[]实现的重载unordered_map独有:
一.哈希表:
1.直接定址法:
1.数据比较集中并且数据都比较小。
2.使用key值作为下标进行数据的存贮。
3.适用于数据比较小并且连续的情况。
字符串中第一个唯一字符
2.闭散列的开放定址法:
1.基本结构:
namespace oper_addres {enum state {Empty,Delete,Exist,};template<class k, class v>struct Hash_Node {Hash_Node(pair<k, v> x = pair<k,v>()):_date(x),_state(Empty){}pair<k, v> _date;state _state;};template<class k, class v>class Hash {public:Hash(size_t n = 10){_hash.resize(n);}private:vector<Hash_Node<k, v>> _hash;size_t _num = 0;};
}
2.insert
1.不存在重复数据:除留余数法,1%10==1 下标1位置放置数值1,4%10=4 下标4位置放置数值4,以此类推。
2.存在重复数据->线性探测->7%10=7 ,下标7位置放置数值7,17%10=7 下标7位置有值就向后放置下标8就放置17,27%10=7下标7位置有值 下标8位置有值下标9放置,++然后取模找到可以放置值的位置结束。
3.如何确定这个位置的值情况?
提供枚举常量 :Empty Delete Exist
4.扩容+数值拷贝:每插入一个值都需要计算负载因子 = 当前插入的数据量/可以插入的size 当这个差值>=0.7就需要进行扩容,新建一个newhashtable大小为当前表的两倍,新的表使用insert插入原来哈希表数据最后交换两个哈希表的vector。
bool insert(pair<k, v> x){//扩容:size_t tmp = ((_num * 10) / _hash.size());if (tmp >= 7){Hash<k, v>* newhash = new Hash<k, v>(_hash.size() * 2);for (auto e : _hash){newhash->insert(e._date);}_hash.swap(newhash->_hash);}//1.正常插入:插入位置size_t indx = x.first % _hash.size();//2.进行插入:if ((_hash[indx]._state) != Empty || (_hash[indx]._state) == Delete){//向后查找->线性探测:while (_hash[indx]._state == Exist){indx++;indx %= _hash.size();}_hash[indx]._date = x;_hash[indx]._state = Exist;_num++;return true;}_hash[indx]._date = x;_hash[indx]._state = Exist;_num++;return true;}

3.find
1.find数据传参查找的数据并且返回数据的下标。
2.数据%hashtable.size(),对应下标位置就是这个值返回下标,如果不是线性探测直到空为止。数据不存在返回-1.
int find(const k& fd){size_t Hashi = fd % _hash.size();if (_hash[Hashi]._state == Exist && _hash[Hashi]._date.first == fd){return Hashi;}else{while (_hash[Hashi]._date.first != fd && _hash[Hashi]._state != Empty){Hashi++;Hashi %= _hash.size();}if (_hash[Hashi]._date.first == fd && _hash[Hashi]._state == Exist)return Hashi;elsereturn -1;}}
4.erase
1.这个地方首先使用find找到对应的下标位置进行返回。
2.找到就修改这个位置的状态为Delete,并且返回true。
bool erase(const k& fd){int hashi = find(fd);if (hashi != -1){_hash[hashi]._state = Delete;return true;}return false;}
5.补充:
size_t size(){return _num;}bool empty(){if (_num == 0)return true;return false;}
1.哈希冲突?
2.数据%hashtable.size()同一个位置的数据然后进行线性探测,线性探测的次数越多哈希冲突越多。哈希冲突越多,效率就越低。
3.当因子大于0.7就考虑进行扩容。
6.pair<k,v> k的数据类型:
1.数据类型的一个转换考虑如何变成下标可以识别的size_t类型。
2.实现仿函数,并且重载operator()
3.特殊类型可以使用类模板的特化。
template<class T>struct transition{size_t operator()(const T& x){return x;}};//1.string -> stringtemplate<>struct transition<string>{size_t operator()(const string& x){//1.可以计算string字符串的asia码的和并且每次*131降低哈希冲突:size_t sum = 0;for (auto& e : x){sum += (e*131);}return sum;}};

3.开散列的拉链法/哈希桶:
1.开散列,首先对于key值计算出下标位置,具有相同下标位置的值放在同一个子集里面,每一个子集就是一个桶,每一个桶中的元素通过一个单链表连接在一起,每一个链表的头节点由vector保存
1.基本结构:
namespace Hash_bucket{template<class T>struct transition{size_t operator()(const T& x){return x;}};//1.string -> stringtemplate<>struct transition<string>{size_t operator()(const string& x){//1.可以计算string字符串的asia码的和并且每次*131降低哈希冲突:size_t sum = 0;for (auto& e : x){sum += (e * 131);}return sum;}};template<class k, class v>struct Hash_Node {typedef Hash_Node Node;Hash_Node(pair<k, v> x = pair<k, v>()):_date(x),_next(nullptr){}pair<k, v> _date;Node* _next;};//, class trans = transition<k>template<class k, class v, class trans = transition<k>>class Hash {public:typedef Hash_Node<k, v> Node;Hash(size_t n = 10){_hash.resize(n,nullptr);_num = 0;}private:vector<Node*> _hash;size_t _num;};
}
2.insert
1.正常插入:
bool insert(const pair<k, v>& x){//1.正常插入:trans kot;size_t hashi = kot(x.first) % _hash.size();Node* newnode = new Node(x);//1-1:_hash[hashi]==nullptr 直接插入节点:if (_hash[hashi] == nullptr){_hash[hashi] = newnode;_num++;return true;}//1-2:_hash[hashi]!=nullptr 进行单链表的头插:else{newnode->_next = _hash[hashi];_hash[hashi] = newnode;_num++;return true;}return false;}

2.考虑扩容
1,什么时候需要取进行扩容?
2.当我们的vector<Node*> _hash;每一个下标处都有非空节点就进行扩容。
3.扩容需要考虑原来链表中保存的节点并且考虑进行重新的插入数据。
4.节点数据不需要先delete后new,直接进行简单连接的转移。
5.开头使用find可以帮助我们判断要插入的这个节点之前存不存在。
bool insert(const pair<k, v>& x){if (find(x.first))return false;trans kot;//1.计算平衡因子:if (_num == _hash.size()){vector<Node*> newhash(_hash.size() * 2, nullptr);for(int i=0;i<_hash.size();i++){Node* cur = _hash[i];while (cur){Node* next = cur->_next;// 头插到新表size_t hashi = kot(cur->_date.first) % (_hash.size()*2);cur->_next = newhash[hashi];newhash[hashi] = cur;cur = next;}_hash[i] = nullptr;}_hash.swap(newhash);}else{//1.正常插入size_t hashi = kot(x.first) % _hash.size();Node* newnode = new Node(x);//1-1:_hash[hashi]==nullptr 直接插入节点:newnode->_next = _hash[hashi];_hash[hashi] = newnode;_num++;return true;}return false;}
3.find
1.%_hash.size()快速确定下标位置。
2.通过cur遍历单链表找到值相同的节点就返回。
3.找不到就返回空节点。
Node* find(const k& fd)
{trans kot;size_t i = kot(fd) % _hash.size();Node* cur = _hash[i];while (cur){if (cur->_date.first == fd)return cur;cur = cur->_next;}return nullptr;
}
4.erase
1.%_hash.size()快速确定下标位置。
2.两个情况:
2-1:_hash[hashi]保存的就是需要删除的节点
2-1:需要删除的节点在单链表中。
bool erase(const k& fd){trans kot;size_t i = kot(fd) % _hash.size();Node* cur = _hash[i];Node* prev = nullptr;while (cur){if (cur->_date.first == fd){//头节点就是需要删除的if (prev == nullptr){_hash[i] = cur->_next;}//在单链表中的节点需要被删除:else{prev->_next = cur->_next;}return true;}prev = cur;cur = cur->_next;}return false;}
5.数据计算观察:
void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0; i < _hash.size(); i++){Node* cur = _hash[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}averageBucketLen = (double)sum / (double)bucketSize;//平衡因子printf("load factor:%lf\n", (double)_num / _hash.size());//表长度:printf("all bucketSize:%d\n",_hash.size());//桶的个数:printf("bucketSize:%d\n", bucketSize);//最长的桶的长度printf("maxBucketLen:%d\n", maxBucketLen);//平均桶长度printf("averageBucketLen:%lf\n\n", averageBucketLen);}
二.unordered_set和unordered_map的封装:
1.unordered_set
1.基本结构:
namespace sfpy {template<class k,class transition = transition<k>>class myunset {public:struct copy_set {const k& operator()(const k& x){return x;}};private:Hash_bucket::Hash<k,k,copy_set,transition> _t;};
}
2.插入:
//1.插入:bool Insert(const k& x){pair<iterator, bool> ret = _t.Insert(x);return ret.second;}bool insert(const k& x){return _t.insert(x);}
3.迭代器:
typedef typename Hash_bucket::Hash<k, k, copy_set, transition>::_iterator iterator;iterator begin(){return _t.find_begin();}iterator end(){return nullptr;}
4.find
//3.find()iterator _find(const k& x){return _t.Find(x);}
5.整体代码:
namespace sfpy {template<class k,class transition = transition<k>>class myunset {public:struct copy_set {const k& operator()(const k& x){return x;}};typedef typename Hash_bucket::Hash<k, k, copy_set, transition>::_iterator iterator;//1.插入:bool Insert(const k& x){pair<iterator, bool> ret = _t.Insert(x);return ret.second;}bool insert(const k& x){return _t.insert(x);}//2.迭代器:iterator begin(){return _t.find_begin();}iterator end(){return nullptr;}//3.find()iterator _find(const k& x){return _t.Find(x);}private:Hash_bucket::Hash<k,k,copy_set,transition> _t;};
}
2.unorder_map
1.基本结构:
namespace sfpy {template<class k , class v , class transition = transition<k>>class myunmap {public:struct copy_map{const k& operator()(const pair<k,v>& x){return x.first;}};private:Hash_bucket::Hash<k,pair<k,v>, copy_map , transition> _t;};
}
2.插入:
//1.插入:bool Insert(const pair<k, v> x){pair<iterator, bool> ret = _t.Insert(x);return ret.second;}bool insert(const pair<k, v> x){return _t.insert(x);}
3.迭代器:
typedef typename Hash_bucket::Hash<k, pair<k, v>, copy_map, transition>::_iterator iterator;//2.迭代器iterator begin(){return _t.find_begin();}iterator end(){return _t.find_end();}
4.find
iterator _find(const k& x){return _t.Find(x);}
5.operator[]重载:
v& operator[](const k& key){pair<iterator, bool> ret = _t.Insert(make_pair(key,v()));return ret.first->second;}
6.整体代码:
namespace sfpy {template<class k , class v , class transition = transition<k>>class myunmap {public:struct copy_map{const k& operator()(const pair<k,v>& x){return x.first;}};typedef typename Hash_bucket::Hash<k, pair<k, v>, copy_map, transition>::_iterator iterator;//1.插入:bool Insert(const pair<k, v> x){pair<iterator, bool> ret = _t.Insert(x);return ret.second;}bool insert(const pair<k, v> x){return _t.insert(x);}//2.迭代器iterator begin(){return _t.find_begin();}iterator end(){return _t.find_end();}//3.find()iterator _find(const k& x){return _t.Find(x);}v& operator[](const k& key){pair<iterator, bool> ret = _t.Insert(make_pair(key,v()));return ret.first->second;}private:Hash_bucket::Hash<k,pair<k,v>, copy_map , transition> _t;};
}
7.补充代码:
1.我们知道在unordered_set和unordered_map中key值是不可以被修改的。
2.我们上面的代码是可以修改key值就是一个比较离谱的事情。
3.封装unordered_map和unordered_set对key的类型进行加const。
namespace sfpy {template<class k , class v , class transition = transition<k>>class myunmap {public:struct copy_map{const k& operator()(const pair<const k,v>& x){return x.first;}};typedef typename Hash_bucket::Hash<k, pair<const k, v>, copy_map, transition>::_iterator iterator;//1.插入:bool Insert(const pair<const k, v> x){pair<iterator, bool> ret = _t.Insert(x);return ret.second;}bool insert(const pair<const k, v> x){return _t.insert(x);}//2.迭代器iterator begin(){return _t.find_begin();}iterator end(){return _t.find_end();}//3.find()iterator _find(const k& x){return _t.Find(x);}v& operator[](const k& key){pair<iterator, bool> ret = _t.Insert(make_pair(key,v()));return ret.first->second;}private:Hash_bucket::Hash<k,pair<const k, v>, copy_map , transition> _t;};
}
3.HashTable
1.map和set去封装同一个哈希表。
2.模板:template<class k , class T, class copy, class trans>
3.copy类重载了operator()做键值的获取。
4.trans是一个类型转换,比如说string转化为一个size_t类型方便下标的使用。
1.find查找:
1.返回查找到的数据的节点或者空指针。
2.数据计算下表并且遍历单链表找到节点返回节点指针。
3.找不到节点就返回nullptr
Node* find(const k& fd){trans up;copy kot;size_t i = up(fd) % _hash.size();Node* cur = _hash[i];while (cur){if ((up(kot(cur->_date))) == up(fd))return cur;cur = cur->_next;}return nullptr;}
2.迭代器:
1.基本结构:
1.迭代器肯定需要封装数据的节点。
2.封装数据的节点够吗?不够!
3.只封装数据的节点重载++在一个单链表的数据还可以,但是进行链表的跳转就无法实现了。
4.考虑封装一个哈希表到迭代器中。
5.迭代器和哈希表会相互封装(上面的类找不到下面的)—>模板+声明放到上面的那个类的上面。
struct unorderediterator{typedef Hash_Node<T> Node;typedef Hash<k, T, copy, trans> HT;typedef unorderediterator<k, T, copy, trans> self;HT* _Hash;Node* _node;unorderediterator(HT* hash, Node* x):_Hash(hash), _node(x){}};
2.operator++
1,情况一:当前节点的下一个不是空直接修改迭代器中节点的内容_node = cur->next
2.情况二:当前节点的下一个是空,求当前单链表所在节点的哈希下表使用节点访问数据进行计算,找到下标之后哈希表向后进行遍历。
2-1:找到一个不是空的就进行_node的修改。
2-2:找不到,表示哈希表一直向后进行遍历到结尾都是空指针。
//主要是要去找节点:self operator++(){trans kot;copy up;//1.情况一:当前节点有下一个节点:if (_node->_next != nullptr)_node = _node->_next;//2.哈希位置的跳转:else{size_t hashi = kot(up(_node->_date)) % _Hash->_hash.size();hashi++;while (hashi < _Hash->_hash.size()){if (_Hash->_hash[hashi]){_node = _Hash->_hash[hashi];break;}hashi++;}if (hashi == _Hash->_hash.size())_node = nullptr;}return *this;}
3.整体代码:
//迭代器:template<class k, class T, class copy, class trans>struct unorderediterator{typedef Hash_Node<T> Node;typedef Hash<k, T, copy, trans> HT;typedef unorderediterator<k, T, copy, trans> self;HT* _Hash;Node* _node;unorderediterator(HT* hash, Node* x):_Hash(hash), _node(x){}T& operator*(){return _node->_date;}T* operator->(){return &(_node->_date);}bool operator!=(const self& bitter)//self* bitter{//比较哈希表中的vector不是iterator?//迭代器==哈希+节点 比较迭代器的地址还是节点的地址?if (this->_node == bitter._node)return false;return true;}//主要是要去找节点:self operator++(){trans kot;copy up;//1.情况一:当前节点有下一个节点:if (_node->_next != nullptr)_node = _node->_next;//2.哈希位置的跳转:else{size_t hashi = kot(up(_node->_date)) % _Hash->_hash.size();hashi++;while (hashi < _Hash->_hash.size()){if (_Hash->_hash[hashi]){_node = _Hash->_hash[hashi];break;}hashi++;}if (hashi == _Hash->_hash.size())_node = nullptr;}return *this;}};
3.插入:
1.bool返回的插入:
1.正常插入:通过key计算下标值。
2.当前Hash[hashi]中已经有数据进行头插操作。
3.当前Hash[hashi]中没有有数据就修改hash[hashi]值。
4.负载因子到1就需要进行扩容操作,负载因子=单链表个数/hash.size()
5.创建一个新的大小为当前哈希表的两倍,遍历原来的链表有key求下标的方法重新进行原来数据的移动,节约了时间,结尾和_node进行哈希表的交换。
bool insert(const T& x){copy kot;trans up;//1.调find函数去查一下当前要插入的数据是否已经存在if (find(kot(x)))return false;//1.计算平衡因子:if (_num == _hash.size()){vector<Node*> newhash(_hash.size() * 2, nullptr);for (int i = 0; i < _hash.size(); i++){Node* cur = _hash[i];while (cur){Node* next = cur->_next;// 头插到新表size_t hashi = up(kot(cur->_date)) % (_hash.size() * 2);cur->_next = newhash[hashi];newhash[hashi] = cur;cur = next;}_hash[i] = nullptr;}_hash.swap(newhash);}else{//1.正常插入size_t hashi = up(kot(x)) % _hash.size();Node* newnode = new Node(x);//1-1:_hash[hashi]==nullptr 直接插入节点:newnode->_next = _hash[hashi];_hash[hashi] = newnode;_num++;return true;}return false;}Node* find(const k& fd){trans up;copy kot;size_t i = up(fd) % _hash.size();Node* cur = _hash[i];while (cur){if ((up(kot(cur->_date))) == up(fd))return cur;cur = cur->_next;}return nullptr;}
2.重载operator[]实现的重载unordered_map独有:
1,重载operator[]一定需要pair<iterator,bool>的插入返回。
2.operator[]不存在就插入,存在就返回value的引用可以进行修改。
3.ret.second 为false表示已经插入过对应的key值。
4.ret.second 为true表示没有插入过对应的key值这一次刚刚插入数据。
5.优化了一个find的查找返回迭代器类型的数据方便pair<iterator,bool>返回。
pair <_iterator, bool> Insert(const T& x){copy kot;trans up;//1.调find函数去查一下当前要插入的数据是否已经存在if (Find(kot(x))._node)return make_pair(Find(kot(x)),false);//1.计算平衡因子:if (_num == _hash.size()){vector<Node*> newhash(_hash.size() * 2, nullptr);for (int i = 0; i < _hash.size(); i++){Node* cur = _hash[i];while (cur){Node* next = cur->_next;// 头插到新表size_t hashi = up(kot(cur->_date)) % (_hash.size() * 2);cur->_next = newhash[hashi];newhash[hashi] = cur;cur = next;}_hash[i] = nullptr;}_hash.swap(newhash);}else{//1.正常插入size_t hashi = up(kot(x)) % _hash.size();Node* newnode = new Node(x);//1-1:_hash[hashi]==nullptr 直接插入节点:newnode->_next = _hash[hashi];_hash[hashi] = newnode;_num++;return make_pair(_iterator(this,newnode), true);}return make_pair(_iterator(this,nullptr),false);}_iterator Find(const k& fd){trans up;copy kot;size_t i = up(fd) % _hash.size();Node* cur = _hash[i];while (cur){if ((up(kot(cur->_date))) == up(fd))return _iterator(this, cur);cur = cur->_next;}return _iterator(this,nullptr);}
#pragma once#include<iostream>
#include<string>
#include<vector>using namespace std;template<class T>
struct transition
{size_t operator()(const T& x){return x;}
};//1.string -> string
template<>
struct transition<string>
{size_t operator()(const string& x){//1.可以计算string字符串的asia码的和并且每次*131降低哈希冲突:size_t sum = 0;for (auto& e : x){sum += (e * 131);}return sum;}
};namespace Hash_bucket
{template<class T>struct Hash_Node {typedef Hash_Node Node;Hash_Node(T x = T()):_date(x),_next(nullptr){}T _date;Node* _next;};//T() ---> int//T() ---> pair<int,int> pair类型://哈希表和迭代器相互包含需要声明迭代器到哈希表的前面://类模板的声明需要模板+struct/class + 类名:template<class k, class T, class copy, class trans>struct unorderediterator;template<class k , class T, class copy, class trans>class Hash {template<class K, class T, class copy, class Hash>friend struct unorderediterator;public:typedef Hash_Node<T> Node;typedef unorderediterator<k, T, copy, trans> _iterator;Hash(size_t n = 10){_hash.resize(n,nullptr);_num = 0;}pair <_iterator, bool> Insert(const T& x){copy kot;trans up;//1.调find函数去查一下当前要插入的数据是否已经存在if (Find(kot(x))._node)return make_pair(Find(kot(x)),false);//1.计算平衡因子:if (_num == _hash.size()){vector<Node*> newhash(_hash.size() * 2, nullptr);for (int i = 0; i < _hash.size(); i++){Node* cur = _hash[i];while (cur){Node* next = cur->_next;// 头插到新表size_t hashi = up(kot(cur->_date)) % (_hash.size() * 2);cur->_next = newhash[hashi];newhash[hashi] = cur;cur = next;}_hash[i] = nullptr;}_hash.swap(newhash);}else{//1.正常插入size_t hashi = up(kot(x)) % _hash.size();Node* newnode = new Node(x);//1-1:_hash[hashi]==nullptr 直接插入节点:newnode->_next = _hash[hashi];_hash[hashi] = newnode;_num++;return make_pair(_iterator(this,newnode), true);}return make_pair(_iterator(this,nullptr),false);}_iterator Find(const k& fd){trans up;copy kot;size_t i = up(fd) % _hash.size();Node* cur = _hash[i];while (cur){if ((up(kot(cur->_date))) == up(fd))return _iterator(this, cur);cur = cur->_next;}return _iterator(this,nullptr);}bool insert(const T& x){copy kot;trans up;//1.调find函数去查一下当前要插入的数据是否已经存在if (find(kot(x)))return false;//1.计算平衡因子:if (_num == _hash.size()){vector<Node*> newhash(_hash.size() * 2, nullptr);for (int i = 0; i < _hash.size(); i++){Node* cur = _hash[i];while (cur){Node* next = cur->_next;// 头插到新表size_t hashi = up(kot(cur->_date)) % (_hash.size() * 2);cur->_next = newhash[hashi];newhash[hashi] = cur;cur = next;}_hash[i] = nullptr;}_hash.swap(newhash);}else{//1.正常插入size_t hashi = up(kot(x)) % _hash.size();Node* newnode = new Node(x);//1-1:_hash[hashi]==nullptr 直接插入节点:newnode->_next = _hash[hashi];_hash[hashi] = newnode;_num++;return true;}return false;}Node* find(const k& fd){trans up;copy kot;size_t i = up(fd) % _hash.size();Node* cur = _hash[i];while (cur){if ((up(kot(cur->_date))) == up(fd))return cur;cur = cur->_next;}return nullptr;}bool erase(const T& fd){trans kot;copy up;size_t i = kot(up(fd)) % _hash.size();Node* cur = _hash[i];Node* prev = nullptr;while (cur){if (up(cur->_date) == fd){if (prev == nullptr){_hash[i] = cur->_next;}else{prev->_next = cur->_next;}return true;}prev = cur;cur = cur->_next;}return false;}void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0; i < _hash.size(); i++){Node* cur = _hash[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}averageBucketLen = (double)sum / (double)bucketSize;//平衡因子printf("load factor:%lf\n", (double)_num / _hash.size());//表长度:printf("all bucketSize:%d\n",_hash.size());//桶的个数:printf("bucketSize:%d\n", bucketSize);//最长的桶的长度printf("maxBucketLen:%d\n", maxBucketLen);//平均桶长度printf("averageBucketLen:%lf\n\n", averageBucketLen);}//找开始的节点:_iterator find_begin(){for (int i = 0; i < _hash.size(); i++){if (_hash[i]){return _iterator(this, _hash[i]);}}return _iterator(this, nullptr);}_iterator find_end(){return _iterator(this, nullptr);}private://指针数组:vector<Node*> _hash;size_t _num;};//迭代器:template<class k, class T, class copy, class trans>struct unorderediterator{typedef Hash_Node<T> Node;typedef Hash<k, T, copy, trans> HT;typedef unorderediterator<k, T, copy, trans> self;HT* _Hash;Node* _node;unorderediterator(HT* hash, Node* x):_Hash(hash), _node(x){}T& operator*(){return _node->_date;}T* operator->(){return &(_node->_date);}bool operator!=(const self& bitter)//self* bitter{//比较哈希表中的vector不是iterator?//迭代器==哈希+节点 比较迭代器的地址还是节点的地址?if (this->_node == bitter._node)return false;return true;}//主要是要去找节点:self operator++(){trans kot;copy up;//1.情况一:当前节点有下一个节点:if (_node->_next != nullptr)_node = _node->_next;//2.哈希位置的跳转:else{size_t hashi = kot(up(_node->_date)) % _Hash->_hash.size();hashi++;while (hashi < _Hash->_hash.size()){if (_Hash->_hash[hashi]){_node = _Hash->_hash[hashi];break;}hashi++;}if (hashi == _Hash->_hash.size())_node = nullptr;}return *this;}};
}相关文章:
[C++]20:unorderedset和unorderedmap结构和封装。
unorderedset和unorderedmap结构和封装 一.哈希表:1.直接定址法:2.闭散列的开放定址法:1.基本结构:2.insert3.find4.erase5.补充:6.pair<k,v> k的数据类型: 3.开散列的拉链法/哈希桶:1.基…...
ARM 汇编指令:(六) B 跳转指令
目录 一.B 和 BL 1.B/BL指令的语法格式 2.示例解析 一.B 和 BL 跳转指令 B 使程序跳转到指定的地址执行程序。指令 BL 将下一条指令的地址复制到 R14(即返回地址连接寄存器 LR)寄存器中,然后跳转到指定地址运行程序。 1.B/B…...
SQLiteC/C++接口详细介绍之sqlite3类(十一)
返回目录:SQLite—免费开源数据库系列文章目录 上一篇:SQLiteC/C接口详细介绍之sqlite3类(十) 下一篇:SQLiteC/C接口详细介绍之sqlite3类(十二)(未发表) 33.sq…...
百度智能云+SpringBoot=AI对话【人工智能】
百度智能云SpringBootAI对话【人工智能】 前言版权推荐百度智能云SpringBootAI对话【人工智能】效果演示登录AI对话 项目结构后端开发pom和propertiessql_table和entitydao和mapperservice和implconfig和utilLoginController和ChatController 前端开发css和jslogin.html和chat.…...
第二十七节 Java 多态
本章主要为大家介绍java多态的概念,以及便于理解的多态简单例子。 Java 多态 多态是同一个行为具有多个不同表现形式或形态的能力。 多态性是对象多种表现形式的体现。 比如我们说"宠物"这个对象,它就有很多不同的表达或实现,比…...
基于Springboot的员工健康管理系统(有报告)。Javaee项目,springboot项目。
演示视频: 基于Springboot的员工健康管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构…...
[论文精读]Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection
论文网址:[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org) 论文代码:https://github.com/ChaselTsui/mmrotate-dcfl 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&…...
Selenium WebDriver 中用于查找网页元素的两个方法
这里提供了 Selenium WebDriver 中用于查找元素的两个方法:find_element() 和 find_elements()。 find_element(byid, value: Optional[str] None) → selenium.webdriver.remote.webelement.WebElement 这个方法用于查找满足指定定位策略(By strategy&…...
python 常用装饰器
文章目录 property的介绍与使用作用使用场景装饰方法防止属性被修改 实现setter和getter的行为 staticmethod 与 classmethod作用代码示例 两者区别使用区别代码演示 abstractmethod参考资料 property的介绍与使用 python的property是python的一种装饰器,是用来修饰…...
深入解析MySQL日志系统:Binlog、Undo Log和Redo Log
在数据库系统中,日志文件扮演着至关重要的角色,它们不仅保证了数据的完整性和一致性,还支持了数据的恢复、复制和审计等功能。MySQL数据库中最核心的日志系统包括二进制日志(Binlog)、回滚日志(Undo Log&am…...
强森算法求两点最短路径的基本流程及代码实现
对于强森算法,给定的一个图中,算法首先会构造一个新的节点s,然后从新构造的这个节点引出多条边分别连通图中的每一个节点,这些边的长度一开始是被设置为0的,然后使用贝尔曼-福德算法进行计算,算出从s到图中每一个节点的最短路径。 而在运行贝尔曼-福德算法的过程中如果发…...
数据结构入门篇 之 【双链表】的实现讲解(附完整实现代码及顺序表与线性表的优缺点对比)
一日读书一日功,一日不读十日空 书中自有颜如玉,书中自有黄金屋 一、双链表 1、双链表的结构 2、双链表的实现 1)、双向链表中节点的结构定义 2)、初始化函数 LTInit 3)、尾插函数 LTPushBack 4)、头…...
什么是零日攻击?
一、零日攻击的概念 零日攻击是指利用零日漏洞对系统或软件应用发动的网络攻击。 零日漏洞也称零时差漏洞,通常是指还没有补丁的安全漏洞。由于零日漏洞的严重级别通常较高,所以零日攻击往往也具有很大的破坏性。 目前,任何安全产品或解决方案…...
阿里云2025届春招实习生招聘
投递时间:2024年2月1日-2026年3月1日 岗位职责 负责大型客户“上云”,"用云"技术平台开发。 开发云迁移运维技术工具,帮助阿里云服务团队&&企业客户和服务商自主、高效的完成云迁移。 开发云运维技术工具,帮助…...
简单了解多线程
并发和并行 并发: 在同一时刻,多个指令在单一CPU上交替指向 并行:在同一时刻,多个指令在多个CPU上同时执行 2核4线程,4核8线程,8核16线程,16核32线程 基础实现线程的方式 Thread :继承类 &…...
GEE对上传并读取CSV文件
首先在Assets中上传csv csv格式如下所示: 上传好了之后,来看看这个表能否显示 var table ee.FeatureCollection("projects/a-flyllf0313/assets/dachang_2022"); var sortedTable table.sort(id); // 替换 propertyName 为你想要排序的属性…...
vulnhub-----SickOS靶机
文章目录 1.信息收集2.curl命令反弹shell提权利用POC 1.信息收集 ┌──(root㉿kali)-[~/kali/vulnhub/sockos] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:10:3c:9b, IPv4: 10.10.10.10 Starting arp-scan 1.9.8 with 256…...
slab分配器
什么是slab分配器? 用户态程序可以使用malloc及其在C标准库中的相关函数申请内存;内核也需要经常分配内存,但无法使用标准库函数;linux内核中,伙伴分配器是一种页分配器,是以页为单位的,但这个…...
MySQL面试题之基础夯实
一、mysql当中的基本数据类型有哪些 MySQL中的基本数据类型包括但不限于以下几大类: 数值类型: 整数类型:TINYINT、SMALLINT、MEDIUMINT、INT(INTEGER)、BIGINT浮点数类型:FLOAT、DOUBLE、DECIMAL…...
feign请求添加拦截器
FeignClient 的 configuration 属性: Feign 注解 FeignClient 的 configuration 属性,可以对 feign 的请求进行配置。 包括配置Feign的Encoder、Decoder、 Interceptor 等。 feign 请求添加拦截器,也可以通过这个 configuration 属性 来指…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
java 局域网 rtsp 取流 WebSocket 推送到前端显示 低延迟
众所周知 摄像头取流推流显示前端延迟大 传统方法是服务器取摄像头的rtsp流 然后客户端连服务器 中转多了,延迟一定不小。 假设相机没有专网 公网 1相机自带推流 直接推送到云服务器 然后客户端拉去 2相机只有rtsp ,边缘服务器拉流推送到云服务器 …...
数据可视化交互
目录 【实验目的】 【实验原理】 【实验环境】 【实验步骤】 一、安装 pyecharts 二、下载数据 三、实验任务 实验 1:AQI 横向对比条形图 代码说明: 运行结果: 实验 2:AQI 等级分布饼图 实验 3:多城市 AQI…...
Flask和Django,你怎么选?
Flask 和 Django 是 Python 两大最流行的 Web 框架,但它们的设计哲学、目标和适用场景有显著区别。以下是详细的对比: 核心区别:哲学与定位 Django: 定位: "全栈式" Web 框架。奉行"开箱即用"的理念。 哲学: "包含…...
