当前位置: 首页 > news >正文

【计算机视觉】三、图像处理——实验:图像去模糊和去噪、提取边缘特征

文章目录

  • 0. 实验环境
  • 1. 理论基础
    • 1.1 滤波器(卷积核)
    • 1.2 PyTorch:卷积操作
  • 2. 图像处理
    • 2.1 图像读取
    • 2.2 查看通道
    • 2.3 图像处理
  • 3. 图像去模糊
  • 4. 图像去噪
    • 4.1 添加随机噪点
    • 4.2 图像去噪

在这里插入图片描述

0. 实验环境

  本实验使用了PyTorch深度学习框架,相关操作如下:

conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
conda install matplotlib
conda install pillow numpy
软件包本实验版本
matplotlib3.8.0
numpy1.26.3
pillow10.0.1
python3.11.0
torch2.1.2
torchaudio2.1.2
torchvision0.16.2

1. 理论基础

  二维卷积运算是信号处理和图像处理中常用的一种运算方式,当给定两个二维离散信号或图像 f ( x , y ) f(x, y) f(x,y) g ( x , y ) g(x, y) g(x,y),其中 f ( x , y ) f(x, y) f(x,y) 表示输入信号或图像, g ( x , y ) g(x, y) g(x,y) 表示卷积核。二维卷积运算可以表示为: h ( x , y ) = ∑ m ∑ n f ( m , n ) ⋅ g ( x − m , y − n ) h(x, y) = \sum_{m}\sum_{n} f(m, n) \cdot g(x-m, y-n) h(x,y)=mnf(m,n)g(xm,yn)其中 ∑ m ∑ n \sum_{m}\sum_{n} mn 表示对所有 m , n m, n m,n 的求和, h ( x , y ) h(x, y) h(x,y) 表示卷积后的输出信号或图像。
在这里插入图片描述
  在数学上,二维卷积运算可以理解为将输入信号或图像 f ( x , y ) f(x, y) f(x,y) 和卷积核 g ( x , y ) g(x, y) g(x,y) 进行对应位置的乘法,然后将所有乘积值相加得到输出信号或图像 h ( x , y ) h(x, y) h(x,y)。这个过程可以用于实现一些信号处理和图像处理的操作,例如模糊、边缘检测、图像增强等。

详见:【深度学习】Pytorch 系列教程(七):PyTorch数据结构:2、张量的数学运算(5):二维卷积及其数学原理

1.1 滤波器(卷积核)

  在图像处理中,卷积经常作为特征提取的有效方法.一幅图像在经过卷积操作后得到结果称为特征映射(Feature Map)。图5.3给出在图像处理中几种常用的滤波器,以及其对应的特征映射.图中最上面的滤波器是常用的高斯滤波器,可以用来对图像进行平滑去噪;中间和最下面的滤波器可以用来提取边缘特征
在这里插入图片描述

# 高斯滤波~平滑去噪
conv_kernel1 = torch.tensor([[1/16, 1/8, 1/16],[1/8, 1/4, 1/8],[1/16, 1/8, 1/16]], dtype=torch.float).unsqueeze(0).unsqueeze(0)
# 提取边缘特征
conv_kernel2 = torch.tensor([[0, 1, 0],[1, -4, 1],[0, 1, 0]], dtype=torch.float).unsqueeze(0).unsqueeze(0)
conv_kernel3 = torch.tensor([[0, 1, 1],[-1, 0, 1],[-1, -1, 0]], dtype=torch.float).unsqueeze(0).unsqueeze(0)
print(conv_kernel1.size())
  • 上述均为3x3的单通道卷积核,需要拓展为四维张量(PyTorch就是这么设计的~)

1.2 PyTorch:卷积操作

def conv2d(img_tensor, conv_kernel):convolved_channels = []for i in range(3):channel_input = img_tensor[:, i, :, :]  # 取出每个通道的输入convolved = F.conv2d(channel_input, conv_kernel, padding=1)  convolved_channels.append(convolved)# 合并各通道卷积后的结果output = torch.cat(convolved_channels, dim=1)# 将张量转换为NumPy数组,进而转换为图像output_img = output.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)output_img = Image.fromarray(output_img)return output_img

2. 图像处理

2.1 图像读取

img = Image.open('1.jpg')  
# img = img.resize((128, 128))  # 调整图像大小img_tensor = torch.tensor(np.array(img), dtype=torch.float).permute(2, 0, 1).unsqueeze(0)print(img_tensor.shape)
  • 将图像转换为PyTorch张量:将通道顺序从HWC转换为CHW,并在第一个维度上增加一个维度~卷积操作使用四维张量

2.2 查看通道

  本部分内容纯属没事儿闲的~

img = Image.open('1.jpg')  
img_tensor = torch.tensor(np.array(img), dtype=torch.float).permute(2, 0, 1).unsqueeze(0)
channel1 = img_tensor[:, 0, :, :]  # 提取每个通道
channel2 = img_tensor[:, 1, :, :] 
channel3 = img_tensor[:, 2, :, :]  
plt.figure(figsize=(12, 12)) 
plt.subplot(1, 4, 1)
plt.imshow(img)
plt.axis('off')
plt.subplot(1, 4, 2)
channel1_img = channel1.squeeze().numpy().astype(np.uint8)
channel1_img = Image.fromarray(channel1_img)
plt.imshow(channel1_img)
plt.axis('off')
plt.subplot(1, 4, 3)
channel2_img = channel2.squeeze().numpy().astype(np.uint8)
channel2_img = Image.fromarray(channel2_img)
plt.imshow(channel2_img)
plt.axis('off')
plt.subplot(1, 4, 4)
channel3_img = channel3.squeeze().numpy().astype(np.uint8)
channel3_img = Image.fromarray(channel3_img)
plt.imshow(channel3_img)
plt.axis('off')

在这里插入图片描述

在这里插入图片描述

2.3 图像处理

def plot_img(img_tensor): output_img1 = conv2d(img_tensor, conv_kernel1)output_img2 = conv2d(img_tensor, conv_kernel2)output_img3 = conv2d(img_tensor, conv_kernel3)plt.subplot(2, 2, 1)plt.title('原始图像', fontproperties=font)plt.imshow(img)plt.axis('off')  plt.subplot(2, 2, 2)plt.title('平滑去噪', fontproperties=font)plt.imshow(output_img1)plt.axis('off')  plt.subplot(2, 2, 3)plt.imshow(output_img2)plt.title('边缘特征1', fontproperties=font)  plt.axis('off')  plt.subplot(2, 2, 4)plt.imshow(output_img3)plt.title('边缘特征2', fontproperties=font)  plt.axis('off')  plt.show()
font = FontProperties(fname='C:\Windows\Fonts\simkai.ttf', size=16)  # 使用楷体
plt.figure(figsize=(12, 12))  # 设置图大小12*12英寸
plot_img(img_tensor)  

在这里插入图片描述

在这里插入图片描述

  • 如图所示,图像提取边缘特征效果明显
  • 但图片过于高清,plt输出的(12英寸)原始图像、平滑去噪图像都很模糊~,下面会先降低像素,然后进行去模糊去噪实验
  • 原图为
    在这里插入图片描述

3. 图像去模糊

img = Image.open('2.jpg')  
img = img.resize((480, 480))  # 调小图像~先使原图变模糊
img_tensor = torch.tensor(np.array(img), dtype=torch.float).permute(2, 0, 1).unsqueeze(0)
conv_kernel4 = torch.tensor([[0, 0, 0],[0, 2, 0],[0, 0, 0]], dtype=torch.float).unsqueeze(0).unsqueeze(0)
conv_kernel5 = torch.ones(3, 3).unsqueeze(0).unsqueeze(0)/9
# print(conv_kernel4-conv_kernel5)
font = FontProperties(fname='C:\Windows\Fonts\simkai.ttf', size=32) 
plt.figure(figsize=(32, 32))  
plt.subplot(2, 2, 1)
plt.title('原始图像', fontproperties=font)
plt.imshow(img)
plt.axis('off')  
plt.subplot(2, 2, 2)
plt.title('线性滤波-2', fontproperties=font)
plt.imshow(conv2d(img_tensor, conv_kernel4))
plt.axis('off')  
plt.subplot(2, 2, 3)
plt.imshow(conv2d(img_tensor, conv_kernel5))
plt.title('均值滤波器:模糊', fontproperties=font)  
plt.axis('off')  
plt.subplot(2, 2, 4)
plt.imshow(conv2d(img_tensor, conv_kernel4-conv_kernel5))
plt.title('锐化滤波器:强调局部差异', fontproperties=font)  
plt.axis('off')  
plt.show()

在这里插入图片描述

4. 图像去噪

4.1 添加随机噪点

img = Image.open('1.jpg')  
img = img.resize((640, 640))  # 调小图像~先使原图变模糊
img_tensor = torch.tensor(np.array(img), dtype=torch.float).permute(2, 0, 1).unsqueeze(0)noise = torch.randn_like(img_tensor)    # 与图像相同大小的随机标准正态分布噪点
noisy_img_tensor = img_tensor + noise   # 将噪点叠加到图像上
noisy_img = noisy_img_tensor.squeeze(0).permute(1, 2, 0).to(dtype=torch.uint8)
noisy_img = Image.fromarray(noisy_img.numpy())

4.2 图像去噪

# conv_kernel1 = torch.tensor([[1/16, 1/8, 1/16],
#                             [1/8, 1/4, 1/8],
#                             [1/16, 1/8, 1/16]], dtype=torch.float).unsqueeze(0).unsqueeze(0)
# # 生成随机3x3高斯分布
# random_gaussian = torch.randn(3, 3).unsqueeze(0).unsqueeze(0)
# print(random_gaussian)
font = FontProperties(fname='C:\Windows\Fonts\simkai.ttf', size=32)  # 使用楷体
plt.figure(figsize=(32, 32))  
plt.subplot(1, 3, 1)
plt.title('原始图像', fontproperties=font)
plt.imshow(img)
plt.axis('off')  
plt.subplot(1, 3, 2)
plt.title('噪点图像', fontproperties=font)
plt.imshow(noisy_img)
plt.axis('off')  
plt.subplot(1, 3, 3)
plt.title('去噪图像', fontproperties=font)
plt.imshow(conv2d(noisy_img_tensor, conv_kernel1))
plt.axis('off') 
plt.show()

在这里插入图片描述

相关文章:

【计算机视觉】三、图像处理——实验:图像去模糊和去噪、提取边缘特征

文章目录 0. 实验环境1. 理论基础1.1 滤波器(卷积核)1.2 PyTorch:卷积操作 2. 图像处理2.1 图像读取2.2 查看通道2.3 图像处理 3. 图像去模糊4. 图像去噪4.1 添加随机噪点4.2 图像去噪 0. 实验环境 本实验使用了PyTorch深度学习框架,相关操作…...

用css滤镜做颜色不同的数据卡片(背景图对于css滤镜的使用)

<template> <div class"xx_modal_maincon"><div class"xx_model_bt">履约起始日至计算日配额及履约情况</div><el-row><el-col :span"6"><div class"xx_modal_mod"><div class"mod…...

2024年第六届区块链与物联网国际会议(BIOTC 2024)即将召开!

2024年第六届区块链与物联网国际会议&#xff08;简称&#xff1a;BIOTC 2024&#xff09;将于2024 年 7 月 19 日至 21 日在日本福冈召开&#xff0c;旨在为来自行业、学术界和政府的研究人员、从业者和专业人士提供一个论坛&#xff0c;就研发区块链和物联网的专业实践进行交…...

Django动态路由实例

Django动态路由实例 先说需求&#xff1a; 比如我前端有两个按钮&#xff0c;点击按钮1跳转到user1的用户信息页面&#xff0c;按钮2跳转user2用户信息页面&#xff0c;但是他俩共用同一个视图层 直接上代码 路由层 urlpatterns [path(user/<str:username>/, views…...

基于Vue.js和D3.js的智能停车可视化系统

引言 随着物联网技术的发展&#xff0c;智能停车系统正逐渐普及。前端作为用户交互的主要界面&#xff0c;对于提供直观、实时的停车信息至关重要。 目录 引言 一、系统设计 二、代码实现 1. 环境准备 首先&#xff0c;确保您的开发环境已经安装了Node.js和npm。然后&…...

数据之王国:解析Facebook的大数据应用

引言 作为全球最大的社交媒体平台之一&#xff0c;Facebook拥有庞大的用户群体和海量的数据资源。这些数据不仅包括用户的个人信息和社交行为&#xff0c;还涵盖了广告点击、浏览记录等多方面内容。Facebook通过巧妙地利用这些数据&#xff0c;构建了强大的大数据应用系统&…...

前端小白的学习之路(ES6 一)

提示&#xff1a;关键字声明&#xff1a;let与const,长度单位&#xff1a;em与rem,vw与wh&#xff0c;解构赋值&#xff0c;箭头函数(简介) 目录 一、ES6介绍 二、let&const 1.let 1) 用 let 关键字声明的变量不能提前引用 2) 不允许重复声明变量 3) 可以产生块级作用…...

Linux CentOS 7.6安装Redis 6.2.6 详细保姆级教程

1、安装依赖 //检查是否有依赖 gcc -v //没有则安装 yum install -y gcc2、下载redis安装包 //进入home目录 cd /home //通过wget下载redis安装包 wget https://download.redis.io/releases/redis-6.2.6.tar.gz //解压安装包 tar -zxvf redis-6.2.6.tar.gz3、编译 //进入解压…...

Android 优化 - 数据结构

一、概念 数据结构&#xff1a;数据存储在内存中的顺序和位置关系&#xff0c;选择合适的数据结构能提高内存的利用率。 线性结构链表结构树形结构 二、线性结构 结构优点缺点数组数据呈线性排列&#xff0c;初始化时就要指定长度且无法更改&#xff0c;会开辟一块连续的内…...

Linux环境开发工具之vim

前言 上一期我们已经介绍了软件包管理器yum&#xff0c; 已经可以在linux上查找、安装、卸载软件了&#xff0c;本期我们来介绍一下文本编辑器vim。 本期内容介绍 什么是vim vim的常见的模式以及切换 vim命令模式常见的操作 vim底行模式常见的操作 解决普通用户无法执行sudo问…...

「Linux系列」Shell介绍及起步

文章目录 一、Shell简介二、Shell脚本三、Shell解释器四、相关链接 一、Shell简介 Shell本身是一个用C语言编写的程序&#xff0c;它既是一种命令语言&#xff0c;又是一种程序设计语言。作为命令语言&#xff0c;它交互式地解释和执行用户输入的命令&#xff1b;作为程序设计…...

用pdf2docx将PDF转换成word文档

pdf2docx是一个Python模块&#xff0c;可以将PDF文件转换为docx格式的Word文档。 pdf2docx模块基于Python的pdfminer和python-docx库开发&#xff0c;可以在Windows、Linux和Mac系统上运行。它可以从PDF文件中提取文本和图片&#xff0c;并将其转换成可编辑的Word文档&#xf…...

STM32U5 ADC 自校准不成功的问题分析

1、引言 很多 STM32 系列中的 ADC 都带有自校准的功能。它提供了一个自动校准的过程&#xff0c;用于驱动包括 ADC 上电/掉电序列在内的所有校准动作。在这个过程中&#xff0c;ADC 计算出一个校准因子&#xff0c;并在内部应用到此 ADC 模块&#xff0c;直到下一次 ADC 掉电。…...

使用光标精灵更换电脑鼠标光标样式,一键安装使用

想要让自己在使用电脑时更具个性化&#xff0c;让工作和娱乐更加愉快&#xff0c;改变你的电脑指针光标皮肤可能是一个简单而有效的方法。很多人或许并不清楚如何轻松地调整电脑光标样式&#xff0c;下面我就来分享一种简单的方法。 电脑光标在系统里通常只有几种默认图案&…...

微服务day04(上)-- RabbitMQ学习与入门

1.初识MQ 1.1.同步和异步通讯 微服务间通讯有同步和异步两种方式&#xff1a; 同步通讯&#xff1a;就像打电话&#xff0c;需要实时响应。 异步通讯&#xff1a;就像发邮件&#xff0c;不需要马上回复。 两种方式各有优劣&#xff0c;打电话可以立即得到响应&#xff0c;但…...

Halcon 3D 平面拟合(区域采样、Z值过滤、平面拟合、平面移动)

Halcon 3D 平面拟合(区域采样、Z值过滤、平面拟合、平面移动) 链接:https://pan.baidu.com/s/1UfFyZ6y-EFq9jy0T_DTJGA 提取码:ewdi * 1.读取图片 ****************...

npm 插件 中 版本号为 星号 是什么意思

npm 插件 中 版本号为 星号 是什么意思 "dependencies": {"hstool/side-adaptor": "*","hsui/core": "*","h_ui": "*" }, "devDependencies": {"plugin-jsx": "*","…...

Codeforces\ Round\ 930(C.Bitwise Operation Wizard)

C o d e f o r c e s R o u n d 930 ( C . B i t w i s e O p e r a t i o n W i z a r d ) \Huge{Codeforces\ Round\ 930(C.Bitwise Operation Wizard)} Codeforces Round 930(C.BitwiseOperationWizard) 文章目录 题意思路注意 标程 题目链接&#xff1a;[B.Bitwise Operati…...

监控系统prometheus+grafana+发送告警信息

1、基础环境准备两台或更多的主机 2、关闭selinux vi /etc/selinux/config&#xff0c;修改SELINUX的值为disabled 3、关闭防火墙 systemctl disable firewalld systemctl stop firewalld 4、prometheus官网下载 https://prometheus.io/download/ 5、grafana官网下载 https…...

IoT 物联网场景中如何应对安全风险?——青创智通

工业物联网解决方案-工业IOT-青创智通 ​随着物联网&#xff08;IoT&#xff09;技术的快速发展&#xff0c;越来越多的设备、系统和应用被连接到互联网上&#xff0c;从而构建了一个庞大的物联网生态系统。然而&#xff0c;这种连接性也带来了前所未有的安全风险。在物联网场景…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...