当前位置: 首页 > news >正文

【动态规划】【同余前缀和】【多重背包】[推荐]2902. 和带限制的子多重集合的数目

本文涉及知识点

动态规划汇总
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
C++算法:滑动窗口总结
多重背包

LeetCode2902. 和带限制的子多重集合的数目

给你一个下标从 0 开始的非负整数数组 nums 和两个整数 l 和 r 。
请你返回 nums 中子多重集合的和在闭区间 [l, r] 之间的 子多重集合的数目 。
由于答案可能很大,请你将答案对 109 + 7 取余后返回。
子多重集合 指的是从数组中选出一些元素构成的 无序 集合,每个元素 x 出现的次数可以是 0, 1, …, occ[x] 次,其中 occ[x] 是元素 x 在数组中的出现次数。
注意:
如果两个子多重集合中的元素排序后一模一样,那么它们两个是相同的 子多重集合 。
空 集合的和是 0 。
示例 1:
输入:nums = [1,2,2,3], l = 6, r = 6
输出:1
解释:唯一和为 6 的子集合是 {1, 2, 3} 。
示例 2:
输入:nums = [2,1,4,2,7], l = 1, r = 5
输出:7
解释:和在闭区间 [1, 5] 之间的子多重集合为 {1} ,{2} ,{4} ,{2, 2} ,{1, 2} ,{1, 4} 和 {1, 2, 2} 。
示例 3:
输入:nums = [1,2,1,3,5,2], l = 3, r = 5
输出:9
解释:和在闭区间 [3, 5] 之间的子多重集合为 {3} ,{5} ,{1, 2} ,{1, 3} ,{2, 2} ,{2, 3} ,{1, 1, 2} ,{1, 1, 3} 和 {1, 2, 2} 。
提示:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
nums 的和不超过 2 * 104
0 <= l <= r <= 2 * 104

动态规划

vCnt[i]记录i在nums中出现的次数,vCnt[i]不为0的数目不超过200个。
子多重集合 就是子序列。
i为0要特殊处理,否则会死循环。

动态规划的状态表示

dp[i][j] 表示 ,从[0,i]中选取若干个数和为j的可能数。状态数:O(200r)。
注意用滚动向量vPre、dp实现。
由于unorder_map 大约是O(10),所以有超时的风险。直接vector<vector<>> 空间复杂度是:O(nr),空间会超。

利用前缀和优化转移方程

计算后置状态:
dp[j] = ∑ x : 0 v C n t [ i ] v P r e [ j − x × i ] s . t j − x × i > = 0 \Large\sum_{x:0}^{vCnt[i]}vPre[j-x\times i] \quad s.t \quad j-x \times i>=0 x:0vCnt[i]vPre[jx×i]s.tjx×i>=0
显然,可以用前缀和优化。
转移方程的时间复杂度为:O(1),总时间复杂度为O(200r)。

动态规划的填表顺序

i从大到小。从小到大似乎也没问题。

动态规划的初始值

vPre[0]=1

动态规划的范围值

∑ x : l r v P r e [ x ] \Large \sum _{x:l}^r vPre[x] x:lrvPre[x]

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};class Solution {
public:int countSubMultisets(vector<int>& nums, int left, int r) {const int iMax = *std::max_element(nums.begin(), nums.end());vector<int> vCnt(1 + iMax);for (const auto& n : nums){vCnt[n]++;}vector<C1097Int<>> vPre(r + 1);vPre[0] = 1;for (int i = iMax; i >= 0; i--){if (0 == vCnt[i]){continue;}vector<C1097Int<>> dp(r + 1);if (0 == i){for (int k = 0; k <= r; k++){dp[k] = vPre[k] * (1 + vCnt[i]);}}else{for (int m = 0; m < i; m++){C1097Int<> iiSum = 0;for (int k = m; k <= r; k += i){iiSum += vPre[k];const int delIndex = k - (vCnt[i] + 1) * i;if (delIndex >= 0){iiSum -= vPre[delIndex];}dp[k] = iiSum;}}}vPre.swap(dp);}C1097Int<> biRet = std::accumulate ( vPre.begin() + left, vPre.begin() + r + 1, C1097Int<>());return biRet.ToInt();}
};

测试用例

emplate<class T, class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> nums;int l,  r;{Solution sln;nums = { 1, 2, 2, 3 }, l = 6, r = 6;auto res = sln.countSubMultisets(nums, l, r);Assert(1, res);}{Solution sln;nums = { 2, 1, 4, 2, 7 }, l = 1, r = 5;auto res = sln.countSubMultisets(nums, l, r);Assert(7, res);}{Solution sln;nums = { 1, 2, 1, 3, 5, 2 }, l = 3, r = 5;auto res = sln.countSubMultisets(nums, l, r);Assert(9, res);}
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:

【动态规划】【同余前缀和】【多重背包】[推荐]2902. 和带限制的子多重集合的数目

本文涉及知识点 动态规划汇总 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 C算法&#xff1a;滑动窗口总结 多重背包 LeetCode2902. 和带限制的子多重集合的数目 给你一个下标从 0 开始的非负整数数组 nums 和两个整数 l 和 r 。 请你…...

nginx介绍及搭建

架构模型 Nginx是由一个master管理进程、多个worker进程组成的多进程模型。master负责管理worker进程&#xff0c;worker进程负责处理网络事件&#xff0c;整个框架被设计为一种依赖事件驱动、异步、非阻塞的模式。 优势&#xff1a; 1、充分利用多核&#xff0c;增强并发处理…...

树莓派夜视摄像头拍摄红外LED灯

NoIR相机是一种特殊类型的红外摄像头&#xff0c;其名称来源于"No Infrared"的缩写。与普通的彩色摄像头不同&#xff0c;NoIR相机具备红外摄影和低光条件下摄影的能力。 一般摄像头能够感知可见光&#xff0c;并用于普通摄影和视频拍摄。而NoIR相机则在设计上去除了…...

Oracle19C静默安装教程

文章目录 一、安装前的准备1、安装Linux操作系统2、配置网络源或者本地源3、hosts文件配置 二、准备安装环境1、安装依赖包2、创建oracle用户组3、配置系统内核参数4、关闭selinux5、配置oracle用户环境6、修改用户的Shell限制 三、静默安装Oracle数据库1、创建oracle安装目录2…...

【机器学习】基于粒子群算法优化的BP神经网络分类预测(PSO-BP)

目录 1.原理与思路2.设计与实现3.结果预测4.代码获取 1.原理与思路 【智能算法应用】智能算法优化BP神经网络思路【智能算法】粒子群算法&#xff08;PSO&#xff09;原理及实现 2.设计与实现 数据集&#xff1a; 多输入多输出&#xff1a;样本特征24&#xff0c;标签类别4…...

Sora后时代文生视频的探索

一、写在前面 按常理&#xff0c;这里应该长篇大论地介绍一下Sora发布对各行业各方面产生的影响。不过&#xff0c;这类文章已经很多了&#xff0c;我们今天主要聊聊那些已经成熟的解决方案、那些已经可以“信手拈来”的成果&#xff0c;并以此为基础&#xff0c;看看Sora发布…...

指南:在各主流操作系统上安装与配置Apache Tomcat

指南&#xff1a;在各主流操作系统上安装与配置Apache Tomcat Apache Tomcat作为一款广受欢迎的开源Java Servlet容器&#xff0c;为用户提供了一个纯Java环境下的Web服务器和Servlet容器。本文将详细介绍如何在不同的操作系统上安装Apache Tomcat&#xff0c;并进行基本的配置…...

物联网的介绍

物联网&#xff08;Internet of Things&#xff0c;简称IoT&#xff09;是指通过互联网将物理设备、传感器、通信设备和软件系统相互连接&#xff0c;形成一个网络化的系统。它可以实现设备之间的数据交换、信息共享和远程控制&#xff0c;使得物理世界与数字世界紧密结合。 物…...

目标检测——YOLOR算法解读

论文&#xff1a;YOLOR-You Only Learn One Representation: Unifified Network for Multiple Tasks 作者&#xff1a;Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao 链接&#xff1a;https://arxiv.org/abs/2105.04206 代码&#xff1a;https://github.com/WongKinYiu/yolo…...

NVIDIA NCCL 源码学习(十三)- IB SHARP

背景 之前我们看到了基于ring和tree的两种allreduce算法&#xff0c;对于ring allreduce&#xff0c;一块数据在reduce scatter阶段需要经过所有的rank&#xff0c;allgather阶段又需要经过所有rank&#xff1b;对于tree allreduce&#xff0c;一块数据数据在reduce阶段要上行…...

Spark-Scala语言实战(4)

在之前的文章中&#xff0c;我们学习了如何在scala中定义无参&#xff0c;带参以及匿名函数。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark-Scala语言…...

ffmpeg不常用命令整理

最近做了许多有关音视频方面的工作&#xff0c;接触了一些不常用的命令&#xff0c;整理分享出来。 1.剪辑视频 ffmpeg -ss 1 -to 4 -accurate_seek -i input.mp4 -c:v copy output.mp4指定从视频中的第1秒开始&#xff0c;到第4秒结束的部分剪辑。 ss&#xff1a;指定开始时…...

怎么理解面向对象?一文带你全面理解

文章目录 1、类和对象&#xff08;1&#xff09;面向过程和面向对象初步认识&#xff08;2&#xff09;类的引入&#xff08;3&#xff09;类的定义&#xff08;4&#xff09;类的访问限定符及封装4.1 访问限定符4.2 封装 &#xff08;5&#xff09;类的作用域&#xff08;6&am…...

神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)

目录 一、神经网络简介 二、深度学习要解决的问题 三、深度学习的应用 四、计算机视觉 五、计算机视觉面临的挑战 六、得分函数 七、损失函数 八、前向传播 九、反向传播 十、神经元的个数对结果的影响 十一、正则化与激活函数 一、神经网络简介 神经网络是一种有监督…...

Tomcat的Host Manager页面403的原因和解决办法

目录 背景 原因: 解决方案 背景 一直报错 403 Access Denied You are not authorized to view this page.By default the Host Manager is only accessible from a browser running on the same machine as Tomcat. If you wish to modify this restriction, youll need to…...

零基础学华为ip认证难吗?华为认证费用多少?

零基础学华为ip认证难吗&#xff1f; 首先&#xff0c;零基础的学习者可以通过系统的学习&#xff0c;逐步掌握网络基础知识和技能。可以通过阅读教材、参加培训课程、进行实践操作等方式&#xff0c;不断提升自己的知识和技能水平。同时&#xff0c;学习者还可以利用华为提供的…...

[C语言]——内存函数

目录 一.memcpy使用和模拟实现&#xff08;内存拷贝&#xff09; 二.memmove 使用和模拟实现 三.memset 函数的使用&#xff08;内存设置&#xff09; 四.memcmp 函数的使用 C语言中规定&#xff1a; memcpy拷贝的就是不重叠的内存memmove拷贝的就是重叠的内存但是在VS202…...

QGIS编译(跨平台编译)056:PDAL编译(Windows、Linux、MacOS环境下编译)

点击查看专栏目录 文章目录 1、PDAL介绍2、PDAL下载3、Windows下编译4、linux下编译5、MacOS下编译1、PDAL介绍 PDAL(Point Data Abstraction Library)是一个开源的地理空间数据处理库,它专注于点云数据的获取、处理和分析。PDAL 提供了丰富的工具和库,用于处理激光扫描仪、…...

计算机三级——网络技术(综合题第二题)

路由器工作模式 用户模式 当通过Console或Telnet方式登录到路由器时&#xff0c;只要输入的密码正确&#xff0c;路由器就直接进入了用户模式。在该模式下&#xff0c;系统提示符为一个尖括号(>)。如果用户以前为路由器输入过名称&#xff0c;则该名称将会显示在尖指号的前…...

Python 深度学习第二版(GPT 重译)(二)

四、入门神经网络&#xff1a;分类和回归 本章涵盖 您的第一个真实世界机器学习工作流示例 处理矢量数据上的分类问题 处理矢量数据上的连续回归问题 本章旨在帮助您开始使用神经网络解决实际问题。您将巩固从第二章和第三章中获得的知识&#xff0c;并将所学应用于三个新…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...