当前位置: 首页 > news >正文

【动态规划】【同余前缀和】【多重背包】[推荐]2902. 和带限制的子多重集合的数目

本文涉及知识点

动态规划汇总
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
C++算法:滑动窗口总结
多重背包

LeetCode2902. 和带限制的子多重集合的数目

给你一个下标从 0 开始的非负整数数组 nums 和两个整数 l 和 r 。
请你返回 nums 中子多重集合的和在闭区间 [l, r] 之间的 子多重集合的数目 。
由于答案可能很大,请你将答案对 109 + 7 取余后返回。
子多重集合 指的是从数组中选出一些元素构成的 无序 集合,每个元素 x 出现的次数可以是 0, 1, …, occ[x] 次,其中 occ[x] 是元素 x 在数组中的出现次数。
注意:
如果两个子多重集合中的元素排序后一模一样,那么它们两个是相同的 子多重集合 。
空 集合的和是 0 。
示例 1:
输入:nums = [1,2,2,3], l = 6, r = 6
输出:1
解释:唯一和为 6 的子集合是 {1, 2, 3} 。
示例 2:
输入:nums = [2,1,4,2,7], l = 1, r = 5
输出:7
解释:和在闭区间 [1, 5] 之间的子多重集合为 {1} ,{2} ,{4} ,{2, 2} ,{1, 2} ,{1, 4} 和 {1, 2, 2} 。
示例 3:
输入:nums = [1,2,1,3,5,2], l = 3, r = 5
输出:9
解释:和在闭区间 [3, 5] 之间的子多重集合为 {3} ,{5} ,{1, 2} ,{1, 3} ,{2, 2} ,{2, 3} ,{1, 1, 2} ,{1, 1, 3} 和 {1, 2, 2} 。
提示:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
nums 的和不超过 2 * 104
0 <= l <= r <= 2 * 104

动态规划

vCnt[i]记录i在nums中出现的次数,vCnt[i]不为0的数目不超过200个。
子多重集合 就是子序列。
i为0要特殊处理,否则会死循环。

动态规划的状态表示

dp[i][j] 表示 ,从[0,i]中选取若干个数和为j的可能数。状态数:O(200r)。
注意用滚动向量vPre、dp实现。
由于unorder_map 大约是O(10),所以有超时的风险。直接vector<vector<>> 空间复杂度是:O(nr),空间会超。

利用前缀和优化转移方程

计算后置状态:
dp[j] = ∑ x : 0 v C n t [ i ] v P r e [ j − x × i ] s . t j − x × i > = 0 \Large\sum_{x:0}^{vCnt[i]}vPre[j-x\times i] \quad s.t \quad j-x \times i>=0 x:0vCnt[i]vPre[jx×i]s.tjx×i>=0
显然,可以用前缀和优化。
转移方程的时间复杂度为:O(1),总时间复杂度为O(200r)。

动态规划的填表顺序

i从大到小。从小到大似乎也没问题。

动态规划的初始值

vPre[0]=1

动态规划的范围值

∑ x : l r v P r e [ x ] \Large \sum _{x:l}^r vPre[x] x:lrvPre[x]

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};class Solution {
public:int countSubMultisets(vector<int>& nums, int left, int r) {const int iMax = *std::max_element(nums.begin(), nums.end());vector<int> vCnt(1 + iMax);for (const auto& n : nums){vCnt[n]++;}vector<C1097Int<>> vPre(r + 1);vPre[0] = 1;for (int i = iMax; i >= 0; i--){if (0 == vCnt[i]){continue;}vector<C1097Int<>> dp(r + 1);if (0 == i){for (int k = 0; k <= r; k++){dp[k] = vPre[k] * (1 + vCnt[i]);}}else{for (int m = 0; m < i; m++){C1097Int<> iiSum = 0;for (int k = m; k <= r; k += i){iiSum += vPre[k];const int delIndex = k - (vCnt[i] + 1) * i;if (delIndex >= 0){iiSum -= vPre[delIndex];}dp[k] = iiSum;}}}vPre.swap(dp);}C1097Int<> biRet = std::accumulate ( vPre.begin() + left, vPre.begin() + r + 1, C1097Int<>());return biRet.ToInt();}
};

测试用例

emplate<class T, class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> nums;int l,  r;{Solution sln;nums = { 1, 2, 2, 3 }, l = 6, r = 6;auto res = sln.countSubMultisets(nums, l, r);Assert(1, res);}{Solution sln;nums = { 2, 1, 4, 2, 7 }, l = 1, r = 5;auto res = sln.countSubMultisets(nums, l, r);Assert(7, res);}{Solution sln;nums = { 1, 2, 1, 3, 5, 2 }, l = 3, r = 5;auto res = sln.countSubMultisets(nums, l, r);Assert(9, res);}
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:

【动态规划】【同余前缀和】【多重背包】[推荐]2902. 和带限制的子多重集合的数目

本文涉及知识点 动态规划汇总 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 C算法&#xff1a;滑动窗口总结 多重背包 LeetCode2902. 和带限制的子多重集合的数目 给你一个下标从 0 开始的非负整数数组 nums 和两个整数 l 和 r 。 请你…...

nginx介绍及搭建

架构模型 Nginx是由一个master管理进程、多个worker进程组成的多进程模型。master负责管理worker进程&#xff0c;worker进程负责处理网络事件&#xff0c;整个框架被设计为一种依赖事件驱动、异步、非阻塞的模式。 优势&#xff1a; 1、充分利用多核&#xff0c;增强并发处理…...

树莓派夜视摄像头拍摄红外LED灯

NoIR相机是一种特殊类型的红外摄像头&#xff0c;其名称来源于"No Infrared"的缩写。与普通的彩色摄像头不同&#xff0c;NoIR相机具备红外摄影和低光条件下摄影的能力。 一般摄像头能够感知可见光&#xff0c;并用于普通摄影和视频拍摄。而NoIR相机则在设计上去除了…...

Oracle19C静默安装教程

文章目录 一、安装前的准备1、安装Linux操作系统2、配置网络源或者本地源3、hosts文件配置 二、准备安装环境1、安装依赖包2、创建oracle用户组3、配置系统内核参数4、关闭selinux5、配置oracle用户环境6、修改用户的Shell限制 三、静默安装Oracle数据库1、创建oracle安装目录2…...

【机器学习】基于粒子群算法优化的BP神经网络分类预测(PSO-BP)

目录 1.原理与思路2.设计与实现3.结果预测4.代码获取 1.原理与思路 【智能算法应用】智能算法优化BP神经网络思路【智能算法】粒子群算法&#xff08;PSO&#xff09;原理及实现 2.设计与实现 数据集&#xff1a; 多输入多输出&#xff1a;样本特征24&#xff0c;标签类别4…...

Sora后时代文生视频的探索

一、写在前面 按常理&#xff0c;这里应该长篇大论地介绍一下Sora发布对各行业各方面产生的影响。不过&#xff0c;这类文章已经很多了&#xff0c;我们今天主要聊聊那些已经成熟的解决方案、那些已经可以“信手拈来”的成果&#xff0c;并以此为基础&#xff0c;看看Sora发布…...

指南:在各主流操作系统上安装与配置Apache Tomcat

指南&#xff1a;在各主流操作系统上安装与配置Apache Tomcat Apache Tomcat作为一款广受欢迎的开源Java Servlet容器&#xff0c;为用户提供了一个纯Java环境下的Web服务器和Servlet容器。本文将详细介绍如何在不同的操作系统上安装Apache Tomcat&#xff0c;并进行基本的配置…...

物联网的介绍

物联网&#xff08;Internet of Things&#xff0c;简称IoT&#xff09;是指通过互联网将物理设备、传感器、通信设备和软件系统相互连接&#xff0c;形成一个网络化的系统。它可以实现设备之间的数据交换、信息共享和远程控制&#xff0c;使得物理世界与数字世界紧密结合。 物…...

目标检测——YOLOR算法解读

论文&#xff1a;YOLOR-You Only Learn One Representation: Unifified Network for Multiple Tasks 作者&#xff1a;Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao 链接&#xff1a;https://arxiv.org/abs/2105.04206 代码&#xff1a;https://github.com/WongKinYiu/yolo…...

NVIDIA NCCL 源码学习(十三)- IB SHARP

背景 之前我们看到了基于ring和tree的两种allreduce算法&#xff0c;对于ring allreduce&#xff0c;一块数据在reduce scatter阶段需要经过所有的rank&#xff0c;allgather阶段又需要经过所有rank&#xff1b;对于tree allreduce&#xff0c;一块数据数据在reduce阶段要上行…...

Spark-Scala语言实战(4)

在之前的文章中&#xff0c;我们学习了如何在scala中定义无参&#xff0c;带参以及匿名函数。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark-Scala语言…...

ffmpeg不常用命令整理

最近做了许多有关音视频方面的工作&#xff0c;接触了一些不常用的命令&#xff0c;整理分享出来。 1.剪辑视频 ffmpeg -ss 1 -to 4 -accurate_seek -i input.mp4 -c:v copy output.mp4指定从视频中的第1秒开始&#xff0c;到第4秒结束的部分剪辑。 ss&#xff1a;指定开始时…...

怎么理解面向对象?一文带你全面理解

文章目录 1、类和对象&#xff08;1&#xff09;面向过程和面向对象初步认识&#xff08;2&#xff09;类的引入&#xff08;3&#xff09;类的定义&#xff08;4&#xff09;类的访问限定符及封装4.1 访问限定符4.2 封装 &#xff08;5&#xff09;类的作用域&#xff08;6&am…...

神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)

目录 一、神经网络简介 二、深度学习要解决的问题 三、深度学习的应用 四、计算机视觉 五、计算机视觉面临的挑战 六、得分函数 七、损失函数 八、前向传播 九、反向传播 十、神经元的个数对结果的影响 十一、正则化与激活函数 一、神经网络简介 神经网络是一种有监督…...

Tomcat的Host Manager页面403的原因和解决办法

目录 背景 原因: 解决方案 背景 一直报错 403 Access Denied You are not authorized to view this page.By default the Host Manager is only accessible from a browser running on the same machine as Tomcat. If you wish to modify this restriction, youll need to…...

零基础学华为ip认证难吗?华为认证费用多少?

零基础学华为ip认证难吗&#xff1f; 首先&#xff0c;零基础的学习者可以通过系统的学习&#xff0c;逐步掌握网络基础知识和技能。可以通过阅读教材、参加培训课程、进行实践操作等方式&#xff0c;不断提升自己的知识和技能水平。同时&#xff0c;学习者还可以利用华为提供的…...

[C语言]——内存函数

目录 一.memcpy使用和模拟实现&#xff08;内存拷贝&#xff09; 二.memmove 使用和模拟实现 三.memset 函数的使用&#xff08;内存设置&#xff09; 四.memcmp 函数的使用 C语言中规定&#xff1a; memcpy拷贝的就是不重叠的内存memmove拷贝的就是重叠的内存但是在VS202…...

QGIS编译(跨平台编译)056:PDAL编译(Windows、Linux、MacOS环境下编译)

点击查看专栏目录 文章目录 1、PDAL介绍2、PDAL下载3、Windows下编译4、linux下编译5、MacOS下编译1、PDAL介绍 PDAL(Point Data Abstraction Library)是一个开源的地理空间数据处理库,它专注于点云数据的获取、处理和分析。PDAL 提供了丰富的工具和库,用于处理激光扫描仪、…...

计算机三级——网络技术(综合题第二题)

路由器工作模式 用户模式 当通过Console或Telnet方式登录到路由器时&#xff0c;只要输入的密码正确&#xff0c;路由器就直接进入了用户模式。在该模式下&#xff0c;系统提示符为一个尖括号(>)。如果用户以前为路由器输入过名称&#xff0c;则该名称将会显示在尖指号的前…...

Python 深度学习第二版(GPT 重译)(二)

四、入门神经网络&#xff1a;分类和回归 本章涵盖 您的第一个真实世界机器学习工作流示例 处理矢量数据上的分类问题 处理矢量数据上的连续回归问题 本章旨在帮助您开始使用神经网络解决实际问题。您将巩固从第二章和第三章中获得的知识&#xff0c;并将所学应用于三个新…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...