当前位置: 首页 > news >正文

GEE遥感云大数据林业应用典型案例及GPT模型应用

近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨大的挑战。传统的工作站和服务器已经无法胜任大区域、多尺度海量遥感数据处理的需要。

 以Earth Engine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,GEE在处理海量遥感数据方面具有不可比拟的优势,一方面提供了丰富的计算资源,另一方面其巨大的云存储节省了科研人员大量的数据下载和预处理的时间,是遥感数据的计算和分析可视化方面代表世界该领域最前沿水平,是遥感领域的一次革命。

聚焦目前遥感应用最热门领域之一的林业,重点结合典型应用案例综合展示GEE云平台的使用技巧和强大功能,解决实际问题的能力。

第一部分:基础实践篇

一、平台及基础开发平台

GEE平台及典型应用案例介绍;

GEE开发环境及常用数据资源介绍;

ChatGPT、文心一言等GPT模型介绍、帐号申请及林业遥感应用

JavaScript基础简介;

GEE遥感云重要概念与典型数据分析流程;

GEE基本对象介绍、矢量和栅格对象可视化、属性查看,API查询、基本调试等平台上手。

二、GEE基础知识与ChatGPT等AI模型交互

影像基本运算与操作:数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取;影像掩码、裁剪和镶嵌等;

要素基本运算与操作:几何缓冲区,交、并、差运算等;

集合对象操作:循环迭代(map/iterate)、合并Merge、联合(Join);

数据整合Reduce:包括影像与影像集整合,影像合成、影像区域统计与域统计,分组整合与区邻域统计,影像集线性回归分析等;

机器学习算法:包括监督(随机森林、CART、SVM、决策树等)与非监督(wekaKMeans、wekaLVQ等)分类算法,分类精度评估等;

数据资产管理:包括本地端矢量和栅格数据上传、云端矢量和栅格数据下载、统计结果数据导出等;

绘图可视化:包括条形图、直方图、散点图、时间序列等图形绘制。

GPT模型交互:结合上述基本知识点和ChatGPT、文心一言等AI工具进行交互演示,包括辅助答疑、代码生成与修正等技巧。

第二部分:重要知识点微型案例串讲与GPT模型交互演示

1)Landsat、Sentinel-2影像批量自动去云和阴影

2)联合Landsat和Sentinel-2批量计算植被指数和年度合成

3)研究区可用影像数量和无云观测数量统计分析

4)中国区域年度NDVI植被数合成及年度最绿DOY时间查找

5)时间序列光学影像数据的移动窗口平滑

6)分层随机抽样及样本导出、样本本地评估与数据上传云端

7)中国近40年降雨量变化趋势分析

8)某区域年度森林损失统计分析(基于Hansen森林产品)

第三部分:典型案例综合演练

案例一:联合多源遥感数据的森林识别

详细介绍联合Landsat时间序列光学影像和PALSAR-2雷达数据,以及决策树算法实现森林等典型地类遥感分类的完整流程。专题涉及影像数据时空过滤、光学影像批量云掩膜与植被指数计算;分层随机抽样及样本导出、本地端质量控制与云端上传、样本随机切分、可分离性分析、分类算法构建及应用、分类后处理和精度评估,专题图绘制等。

案例二:长时间尺度的森林状态监测

利用长时间序列的MODIS或Landsat影像数据,对森林状态进行长期监测,分析森林植被绿化或褐变情况。专题涉及时间序列影像预处理、影像集连接、影像合成、变化趋势非参数检测、显著性检验和变化趋势量化与分级、空间统计和结果可视化和专题图绘制等。

案例三:森林砍伐与退化监测

联合Landsat系列影像,光谱分离模型和NDFI归一化差值分数指数实现森林的砍伐和退化监测。专题涉及影像预处理、混合像元分解、NDFI指数计算、函数封装、变化检测和强度分级,结果可视化、专题图绘制等。

案例四:森林火灾监测
详细介绍利用Landsat和Sentinel-2时间序列光学遥感影像,监测森林火灾损失情况,实现火灾强度分级。专题涉及影像过滤、Landsat和Sentinel-2光学影像除云等预处理、植被指数计算、影像合成、火灾区域识别和灾害强度分级,结果统计分析与可视化等。

案例五:长时间尺度的森林扰动监测

联合30年的Landsat等光学影像和经典LandTrendr算法实现森林扰动的监测。专题涉及长时间序列遥感影像预处理、植被指数批量计算、年度影像合成、数组影像概念和使用方法、LandTrendr算法原理及参数设置、森林扰动结果解译与空间统计分析、可视化及专题图绘制等。

案例六:森林关键生理参数(树高、生物量/碳储量)

反演联合GEDI激光雷达、Landsat/Sentinel-2多光谱光学影像、Sentinel-1 /PALSAR-2雷达影像等和机器学习算法反演森林的关键物理参数,如树高、生物量/碳储量。专题涉及GEDI激光雷达数据介绍、常见光学和雷达数据处理、机器学习算法应用、反演精度评估和变量重要性分析、结果可视化等内容。

图片

图片

图片

图片

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247653111&idx=6&sn=430c3e8f910cdf61cfa5743f88232cb8&chksm=fa77c9cacd0040dcb8abfb05a7c2a97f251bd4c8055fcbff3bc00eabc42e169db98a9f8fe724&token=1472617233&lang=zh_CN&scene=21#wechat_redirect

相关文章:

GEE遥感云大数据林业应用典型案例及GPT模型应用

近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇&#xf…...

macOS Ventura 13.6.5 (22G621) Boot ISO 原版可引导镜像下载

macOS Ventura 13.6.5 (22G621) Boot ISO 原版可引导镜像下载 3 月 8 日凌晨,macOS Sonoma 14.4 发布,同时带来了 macOS Ventru 13.6.5 和 macOS Monterey 12.7.4 安全更新。 macOS Ventura 13.6 及更新版本,如无特殊说明皆为安全更新&…...

数据结构面试常见问题之Insert or Merge

😀前言 本文将讨论如何区分插入排序和归并排序两种排序算法。我们将通过判断序列的有序性来确定使用哪种算法进行排序。具体而言,我们将介绍判断插入排序和归并排序的方法,并讨论最小和最大的能区分两种算法的序列长度。 🏠个人主…...

perl 用 XML::LibXML 解析 Freeplane.mm文件,XML文件

Perl 官网 www.cpan.org 从 https://strawberryperl.com/ 下载网速太慢了 建议从 https://download.csdn.net/download/qq_36286161/87892419 下载 strawberry-perl-5.32.1.1-64bit.zip 约105MB 解压后安装.msi,装完后有520MB,建议安装在D:盘 在云计算…...

Spring Cloud Alibaba微服务从入门到进阶(七)(服务容错-Sentinel)

雪崩效应 我们把基础服务故障,导致上层服务故障,并且这个故障不断放大的过程,成为雪崩效应。 雪崩效应,往往是因为服务没有做好容错造成的。 微服务常见容错方案 仓壁模式 比如让controller有自己独立的线程池,线程池满…...

Arduino RP2040 + SSD1306 I2C OLED +LittleFS存储GBK字库实现中文显示

Arduino RP2040 + SSD1306 I2C OLED +LittleFS存储GBK字库实现中文显示 📌LittleFS插件安装,可以参考《Arduino RP2040 LittleFS的使用介绍》🎈相关内容《Arduino esp8266 软件I2C SSD1306 +LittleFS存储GBK字库实现中文显示》🔖基于Earle F. Philhower, III的核心固件开…...

代码随想录算法训练营第day53|1143.最长公共子序列 、 1035.不相交的线、 53. 最大子序和 动态规划

目录 1143.最长公共子序列 1035.不相交的线 53. 最大子序和 1143.最长公共子序列 力扣题目链接(opens new window) 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。 一个字符串的 子序列 是指这样一个新的字符串:它是由原…...

【Flutter学习笔记】10.2 组合现有组件

参考资料: 《Flutter实战第二版》 10.2 组合现有组件 在Flutter中页面UI通常都是由一些低级别组件组合而成,当我们需要封装一些通用组件时,应该首先考虑是否可以通过组合其他组件来实现,如果可以,则应优先使用组合&…...

C++的vector类(一):vector类的常见操作

目录 前言 Vector类 遍历与初始化vector ​vector的扩容机制 vector的对象操作 find与insert 对象数组 前言 string类中还有一些内容需要注意: STL 的string类怎么啦? C面试中string类的一种正确写法 C STL string的Copy-On-Write技术 C的st…...

SpringBoot注解

Spring Boot 中常用的一些注解及其作用如下所示: SpringBootApplication:标注一个主程序类,用于启动 Spring Boot 应用,通常放在包的最顶层。 RestController:结合 Controller 和 ResponseBody,用于定义 R…...

每日三个JAVA经典面试题(十九)

1.Java Concurrency API 中的 Lock 接口(Lock interface)是什么?对比同步它有什么优势?Java并发API中的Lock接口提供了一种比传统synchronized块或方法更灵活、更强大的线程同步机制。Lock接口允许更细粒度的锁控制,通过它可以实现更复杂的线…...

springboot企业级抽奖项目业务一(登录模块)

开发流程 该业务基于rouyi生成好了mapper和service的代码,现在需要在controller层写接口 实际操作流程: 看接口文档一>controller里定义函数一>看给出的工具类一>补全controller里的函数一>运行测试 接口文档 在登录模块有登录和登出方…...

【Python + Django】启动简单的文本页面

前言: 为了应付(bushi)毕业论文,总要自己亲手搞一个像模像样的项目出来吧 ~ ~ 希望自己能在新的连载中学到项目搭建的知识,这也算是为自己的测试经历增添光彩吧!!! 希望、希望大家…...

Docker——问题解决:服务器端和Windows端IP互通

踩了大坑,特此记录!!!!! 我在服务器端部署了服务,但是在本地端Windows机器上无法访问,因此卡了一天。 1. 双向Ping通 防火墙导致只能单向Ping通 首先需要解决双向ping通的问题&…...

HTTP跨域

1. 简介 HTTP跨域是指不同域名下的网页请求资源时,由于浏览器同源策略限制,导致请求被阻止。为解决这一问题,开发者常采用跨域资源共享(CORS)等技术来允许合法跨域请求,确保网站功能正常运行。 同源 协议…...

用Python的turtle库绘制皮卡丘

turtle库的简介 turtle(海龟)库是turtle绘图体系的python实现,turtle库是一种标准库,是python自带的。 turtle(海龟)是一种真实的存在,有一个海龟在窗口的正中心,在画布上游走,走过的轨迹形成了绘制的图形&#xff0…...

C语言打印当前时间

#include <time.h> void print_current_time(char* func_name) { // 获取当前的时间 time_t current_time; time(&current_time); // 将时间转换为本地时间格式 struct tm *local_time localtime(&current_time); // 打印当前的时间 …...

(一)基于IDEA的JAVA基础4

注释文本&#xff0c;注释模版 单行注释://开头放在代码前面&#xff0c;对少部分。 多行注释:快捷方式ctrlshift/,对段落代码注 释。 文档注释:/**……**/&#xff0c;用于声明作者或创作时 间。 文档注释如何设置&#xff0c;首先找到File中…...

【Python】复习12:标准库与第三方库

目录 概念标准库第三方库总结Python 标准库`os` 模块`sys` 模块`json` 模块`re` 模块`datetime` 模块代码示例`os` 模块例子`sys` 模块例子`json` 模块例子`re` 模块例子`datetime` 模块例子第三方库`numpy``pandas``requests`安装第三方库使用第三方库其他一些流行的Python库数…...

CUDA 12介绍

CUDA&#xff08;Compute Unified Device Architecture&#xff09;是由 NVIDIA 开发的并行计算平台和应用程序编程接口&#xff08;API&#xff09;。CUDA 使开发人员能够使用 NVIDIA GPU 进行通用目的的并行计算。CUDA 通过利用 GPU 的大规模并行计算能力来加速各种类型的计算…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...