【深度学习基础知识】IOU、GIOU、DIOU、CIOU
这里简单记录下IOU及其衍生公式。
为了拉通IOU及其衍生版的公式对比,以及方便记忆,这里用一个统一的图示来表示出所有的参数
- 【A】目标框的区域
- 【B】预测框的区域
- 【C】A与B的交集
- 【D】A与B的并集 = A+B-C
- 【E】A与B的最小外接矩形框
- 【F】最小外接框内非重叠的区域 = E - D,
- 【d】A中心到B中心的欧式距离
- 【L】E的对角线距离
将IOU的衍生公式要当做损失函数时,其损失函数为 IOU loss = 1 − IOU \text{IOU loss}=1-\text{IOU} IOU loss=1−IOU
IOU
- 公式:
IOU = C D \text{IOU} = \frac{C}{D} IOU=DC- 优点
- 优化了原有的L1 loss,L2 loss和Smooth L1 loss,这三个loss都是基于独立的点来进行计算的。
- 直观的反映预测检测框与真实检测框的检测效果。判断Predbox 和GTbox的距离最直接的指标。
- 缺点
- 如果两个框没有相交,C=0,不能反映A与B的距离。此时损失函数不可导,没有梯度回传,loss无法优化两个框不想交的情况。
- IoU无法精确的反映两者的重合度大小。如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差。
GIOU
- 提出
在CVPR2019中,论文Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 的提出了GIoU的思想。- 公式
GIOU = C D − F E \text{GIOU} = \frac{C}{D}-\frac{F}{E} GIOU=DC−EFIOU越大的同时,非重叠区域占比越小,此时两个框越贴合。- 优点
- 加入了非重叠区域的影响,改善了IOU的计算过程
- 在A和B不相交时,可以进行学习训练
- 缺点
- 当目标框A 和 检测框 B 完全互相包含时,F=0,即GIOU退化为IOU。此时无法区分A与B的相对位置,无法进行有效的学习
DIOU
- 提出于 Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
- 公式
GIOU = C D − d L \text{GIOU} = \frac{C}{D}-\frac{d}{L} GIOU=DC−Ld用对角距离把检测框和预测框的中心点距离进行归一化。在IOU值相同时,两个框的中心点归一化距离越小,代表预测框和目标框的更贴合。
IOU越大的同时,中心点归一化距离越近,此时两个框越贴合。- 优点
- DIOU Loss可以直接最小化两个目标框的距离,比GIOU收敛的更快。
- 对于GIOU的缺点,即目标框包裹预测框的这种情况,DIOU Loss可以使回归非常快,而GIOU Loss几乎退化为IOU Loss。
- 缺点
- 框的长宽比指标没有考虑
- 如图9所示,当IOU值和两个框的中心点距离一样时,即检测框中心点在以目标框中心点为圆心半径相同的圆弧上时,DIOU没办法区分。
CIOU
- 公式: CIOU = C D − d F − α v v = 4 π 2 ( a r c t a n ( w g t h g t ) − a r c t a n ( w p r e d h p r e d ) ) \text{CIOU} = \frac{C}{D}-\frac{d}{F}-\alpha v \\ v=\frac{4}{\pi^2}(arctan(\frac{w^{gt}}{h^{gt}})-arctan(\frac{w^{pred}}{h^{pred}})) CIOU=DC−Fd−αvv=π24(arctan(hgtwgt)−arctan(hpredwpred))
- 解释:加入了长宽比相似性的指标, α \alpha α 是权重系数,在论文里有相关计算, 是两个框长宽比指标的相似性计算。
通俗意思是在IOU值和中心点距离值相同时,两个框的长宽比指标越相似,说明预测框与目标框的对比效果越好。- 优点:添加了长宽比的惩罚项,使得评估更加准确。
- 缺点:CIOU Loss涉及到反三角函数,在计算的过程中会消耗一定的算力,整体训练时间会慢一点。
相关文章:

【深度学习基础知识】IOU、GIOU、DIOU、CIOU
这里简单记录下IOU及其衍生公式。 为了拉通IOU及其衍生版的公式对比,以及方便记忆,这里用一个统一的图示来表示出所有的参数 【A】目标框的区域【B】预测框的区域【C】A与B的交集【ÿ…...
【自用笔记】单词
cognitive 认知formulation 阐述方式nonlinear 非线性nonconvex 非凸,无最优解cumulative return 累计回报propagation 传播optimization 优化objective 目标标准差(standard deviation)正态分布(Normal distribution)…...
Linux之shell条件判断
华子目录 if语句单分支案例 双分支案例 多分支 case多条件判断格式执行过程示例 if语句 单分支 # 语法1: if <条件表达式> then指令 fi#语法2: if <条件表达式>;then指令 fi案例 编写脚本choice1.sh,利用单分支结构实现输入2个整数&#…...
“postinstall“: “patch-package“ 修补安装包补丁
在 package.json 文件里,postinstall 是一个钩子脚本,它在每次运行 npm install 命令后自动执行。当你在该字段中指定 "patch-package" 时,意思是在 npm install 安装所有依赖包之后,自动运行 patch-package 命令。 pa…...

PHP+MySQL开发组合:多端多商户DIY商城源码系统 带完整的搭建教程以及安装代码包
近年来,电商行业的迅猛发展,越来越多的商户开始寻求搭建自己的在线商城。然而,传统的商城系统往往功能单一,无法满足商户个性化、多样化的需求。同时,搭建一个功能完善的商城系统需要专业的技术团队和大量的时间成本&a…...
Node.js常用命令
Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,它使得开发者可以使用 JavaScript 来编写服务端的应用。Node.js 提供了大量的命令行工具,以下是一些最常用的 Node.js 命令: 1. node 运行 JavaScript 文件:node [fil…...

LeetCode 2. 两数相加
目录 题目题目描述示例 1:示例 2:示例 3:提示:原题链接 题解解题思路代码实现(C) 题目 题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的…...

抖去推无人直播+矩阵托管+AI文案撰写一体化工具如何开发搭建
一、 开发和搭建抖去推无人直播矩阵托管AI文案撰写一体化工具需要以下步骤: 确定功能需求:确定抖去推无人直播、矩阵托管和AI文案撰写的具体功能需求,如直播推流、直播管理、托管服务、AI文案生成等。 技术选型:选择适合开发该工…...

【鸿蒙HarmonyOS开发笔记】常用组件介绍篇 —— 弹窗组件
简介 弹窗是移动应用中常见的一种用户界面元素,常用于显示一些重要的信息、提示用户进行操作或收集用户输入。ArkTS提供了多种内置的弹窗供开发者使用,除此之外还支持自定义弹窗,来满足各种不同的需求。 下面是所有涉及到的弹窗组件官方文档…...

【嵌入式学习】Qtday03.21
一、思维导图 二、练习 自由发挥登录窗口的应用场景,实现一个登录窗口界面。(不要使用课堂上的图片和代码,自己发挥,有利于后面项目的完成) 要求: 1. 需要使用Ui界面文件进行界面设计 2. ui界面上的组件…...

【C语言】C语言运算符优先级详解
文章目录 📝前言🌉运算符优先级简述 🌠逻辑与和逻辑或🌉赋值和逗号运算符 🌠位运算🌉条件表达式🌉位运算与算术运算结合🌉混合使用条件表达式和赋值运算符🌉 逗号运算符的…...

第十节HarmonyOS 常用容器组件3-GridRow
1、描述 栅格容器组件,仅可以和栅格子组件(GridCol)在栅格布局场景中使用。 2、子组件 可以包含GridCol子组件。 3、接口 GridRow(options:{columns: number | GridRowColumnOption, gutter?: Length | GutterOption, Breakpoints?: B…...

SCXI-1193是National Instruments公司生产的吗?
NI SCXI-1193是一款高密度、32通道RF多路复用器开关模块。 NI SCXI-1193 是一款由 National Instruments(NI)公司生产的屏蔽式电缆。这款电缆通常用于连接数据采集设备和传感器或执行器,以实现信号传输和数据采集。SCXI-1193 电缆具有高度灵活…...

使用clion开发tftlcd屏,移植驱动时遇到的问题记录
问题现象 屏幕只有一半屏在刷新 问题出现的情况(在CLION开发时遇到过) 总结...

工程信号的去噪和(分类、回归和时序)预测
🚀【信号去噪及预测论文代码指导】🚀 还为小论文没有思路烦恼么?本人专注于最前沿的信号处理与预测技术——基于信号模态分解的去噪算法和深度学习的信号(回归、时序和分类)预测算法,致力于为您提供最精确、…...

【VUE】前端阿里云OSS断点续传,分片上传
什么是OSS: 数据以对象(Object)的形式存储在OSS的存储空间(Bucket )中。如果要使用OSS存储数据,您需要先创建Bucket,并指定Bucket的地域、访问权限、存储类型等属性。创建Bucket后,您…...
春招面试高频题目总结
面试问题 redis 可以用于进程间通信吗? Why?How? ---> 延展一下 有哪些进程间通信技术, 优劣如何? 有大量的插入sql语句,一条条的插入性能很差,如何通过事务进行优化? 保证线程安全的策略有哪些&…...

基于SSM+Jsp+Mysql的KTV点歌系统
基于SSMJspMysql的KTV点歌系统 基于SSMJspMysql的KTV点歌系统的设计与实现 开发语言:Java框架:ssm技术:JSPJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工…...
Docker Oracle提示密码过期
进入docker docker exec -it oracle bash 修改环境变量文件 vi .bash_profile 为以下内容 # .bash_profile# Get the aliases and functions if [ -f ~/.bashrc ]; then. ~/.bashrc fi# User specific environment and startup programsPATH$PATH:$HOME/binexport PATH expo…...
5.3、【AI技术新纪元:Spring AI解码】图像生成API
Spring 图像生成API Spring图像生成API旨在提供一个简单且便携的接口,用于与各类专注于图像生成的AI模型交互,使开发者能够在不同图像相关模型之间轻松切换,只需对代码进行最少的改动。这一设计遵循了Spring框架的模块化和可互换性理念,确保开发人员能够快速调整其应用程序…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...