GPT实战系列-LangChain的Prompt提示模版构建
GPT实战系列-LangChain的Prompt提示模版构建
LangChain
GPT实战系列-LangChain如何构建基通义千问的多工具链
GPT实战系列-构建多参数的自定义LangChain工具
GPT实战系列-通过Basetool构建自定义LangChain工具方法
GPT实战系列-一种构建LangChain自定义Tool工具的简单方法
GPT实战系列-搭建LangChain流程简单应用
GPT实战系列-简单聊聊LangChain搭建本地知识库准备
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-简单聊聊LangChain
大模型查询工具助手之股票免费查询接口
Prompt模版是用于生成语言模型提示的预定义模版。
模板可能包括说明、小样本示例,和特定的上下文和问题(适合于特定的任务)。
LangChain提供创建和使用提示模板的工具,其实也没有做太多的工作,就是字符串格式化操作差不多。模版与模型无关,使其适应在不同的语言模型中重复使用。
通常,语言模型的输入,通常是字符串或聊天消息列表。
Prompt模版
用于为字符串提示创建模板。PromptTemplate
默认情况下,PromptTemplate使用 Python 的 用于模板的 str.format 语法,一种字符替换的格式。
from langchain.prompts import PromptTemplateprompt_template = PromptTemplate.from_template("Tell me a {adjective} joke about {content}."
)
prompt_template.format(adjective="funny", content="chickens")
'Tell me a funny joke about chickens.'
该模板支持任意数量的变量,包括无变量:
from langchain.prompts import PromptTemplateprompt_template = PromptTemplate.from_template("Tell me a joke")
prompt_template.format()
'Tell me a joke'
因此,您可以创建任意的自定义提示模板,以任何方式设置提示的格式。
聊天对话模版ChatPromptTemplate
通常,大语言模型(LLM)的应用模型是聊天模型,它的提示是聊天消息列表。
每条聊天消息都与内容相关联,并且其他 参数调用 。例如,在 OpenAI 聊天完成中 API,聊天 消息可以与 AI 助手、人类或系统相关联 角色。
创建一个聊天提示模板,如下所示:
from langchain_core.prompts import ChatPromptTemplatechat_template = ChatPromptTemplate.from_messages([("system", "You are a helpful AI bot. Your name is {name}."),("human", "Hello, how are you doing?"),("ai", "I'm doing well, thanks!"),("human", "{user_input}"),]
)messages = chat_template.format_messages(name="Bob", user_input="What is your name?")
ChatPromptTemplate.from_messages 就是接受各种消息输入。
例如,除了使用 (type, content),则可以传入 or 的实例。MessagePromptTemplate``BaseMessage
from langchain.prompts import HumanMessagePromptTemplate
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAIchat_template = ChatPromptTemplate.from_messages([SystemMessage(content=("You are a helpful assistant that re-writes the user's text to ""sound more upbeat.")),HumanMessagePromptTemplate.from_template("{text}"),]
)
messages = chat_template.format_messages(text="I don't like eating tasty things")
print(messages)
[SystemMessage(content="You are a helpful assistant that re-writes the user's text to sound more upbeat."), HumanMessage(content="I don't like eating tasty things")]
其实就是做了简单的封装,提供一些灵活性,来构建您的 聊天提示。
LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客
GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客
GPT实战系列-大话LLM大模型训练-CSDN博客
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-探究GPT等大模型的文本生成-CSDN博客
相关文章:
GPT实战系列-LangChain的Prompt提示模版构建
GPT实战系列-LangChain的Prompt提示模版构建 LangChain GPT实战系列-LangChain如何构建基通义千问的多工具链 GPT实战系列-构建多参数的自定义LangChain工具 GPT实战系列-通过Basetool构建自定义LangChain工具方法 GPT实战系列-一种构建LangChain自定义Tool工具的简单方法…...
Docker容器中的mysql自动备份脚本
Docker容器中的mysql自动备份脚本 1. 脚本功能 备份容器中的mysql数据库到宿主机上,自动删除7天前的备份文件 2. 脚本内容 #!/bin/bash # auth Eric source /etc/profile # 设置备份目录和文件名 backup_directory"/app/backup" #测试名字用%Y%m%d%H…...
品精酿啤酒:畅享生活,享受快乐
在现代社会,品牌营销策略对于产品的成功至关重要。Fendi club啤酒之所以能够成为畅享生活、享受时尚的代名词,与其品牌营销策略密不可分。 首先,Fendi club啤酒注重品牌形象的塑造。作为一个时尚品牌,Fendi club啤酒将时尚与品质融…...
进程创建,程序加载运行,以及进程终止,什么是僵尸进程,什么是孤儿进程
进程控制 创建进程,撤销进程,实现进程转换(必须一气呵成,使用原语) 原语不被中断是因为有关中断指令 创建进程 撤销进程 进程创建fork fork()函数会创建一个子进程,子进程会返…...
[python]bar_chart_race设置日期格式
1、设置日期标签的时间格式 # 设置日期格式,默认为%Y-%m-%dbcr.bar_chart_race(df, covid19_horiz.gif, period_fmt%b %-d, %Y) 2、更改日期标签为数值 # 设置日期标签为数值bcr.bar_chart_race(df.reset_index(dropTrue), covid19_horiz.gif, interpolate_period…...
Apache FtpServer在Windows上下载安装与使用
Apache FtpServer在Windows上下载安装与使用 1、Apache Ftp Server下载 进入apache官网 https://mina.apache.org/ftpserver-project/old-downloads.html 下载自己使用的版本。 Apache FtpServer 1.1.1及以下的版本需要JDK1.7的支持 Apache FtpServer 1.1.1以上的版本需要JDK…...
CVE-2024-24112 XMall后台管理系统 SQL 注入漏洞分析
------作者本科毕业设计项目 基于 Spring Boot Vue 开发而成...... [Affected Component] /item/list /item/listSearch /sys/log /order/list /member/list (need time-based blind injection) /member/list/remove 项目下载地址 Exrick/xmall: 基于SOA架构的分布式…...
jwt以及加密完善博客系统
目录 一、背景 二、传统登陆功能&强制登陆功能 1、传统的实现方式 2、session存在的问题 三、jwt--令牌技术 1、实现过程 2、令牌内容 3、生成令牌 4、检验令牌 四、JWT登陆功能&强制登陆功能 1、JWT实现登陆功能 2、强制登陆功能 3、运行效果 五、加密/加…...
elk收集k8s微服务日志
一、前言 使用filebeat自动发现收集k8s的pod日志,这里分别收集前端的nginx日志,还有后端的服务java日志,所有格式都是用json格式,建议还是需要让开发人员去输出java的日志为json,logstash分割java日志为json格式&#…...
vue3中如何实现多个侦听器(watch)
<body> <div id"app"><input type"button" value"更改名字" click"change"> </div> <script src"vue.js"></script> <script>new Vue({el: #app,data: {food: {id: 1,name: 冰激…...
【深度学习基础知识】IOU、GIOU、DIOU、CIOU
这里简单记录下IOU及其衍生公式。 为了拉通IOU及其衍生版的公式对比,以及方便记忆,这里用一个统一的图示来表示出所有的参数 【A】目标框的区域【B】预测框的区域【C】A与B的交集【ÿ…...
【自用笔记】单词
cognitive 认知formulation 阐述方式nonlinear 非线性nonconvex 非凸,无最优解cumulative return 累计回报propagation 传播optimization 优化objective 目标标准差(standard deviation)正态分布(Normal distribution)…...
Linux之shell条件判断
华子目录 if语句单分支案例 双分支案例 多分支 case多条件判断格式执行过程示例 if语句 单分支 # 语法1: if <条件表达式> then指令 fi#语法2: if <条件表达式>;then指令 fi案例 编写脚本choice1.sh,利用单分支结构实现输入2个整数&#…...
“postinstall“: “patch-package“ 修补安装包补丁
在 package.json 文件里,postinstall 是一个钩子脚本,它在每次运行 npm install 命令后自动执行。当你在该字段中指定 "patch-package" 时,意思是在 npm install 安装所有依赖包之后,自动运行 patch-package 命令。 pa…...
PHP+MySQL开发组合:多端多商户DIY商城源码系统 带完整的搭建教程以及安装代码包
近年来,电商行业的迅猛发展,越来越多的商户开始寻求搭建自己的在线商城。然而,传统的商城系统往往功能单一,无法满足商户个性化、多样化的需求。同时,搭建一个功能完善的商城系统需要专业的技术团队和大量的时间成本&a…...
Node.js常用命令
Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,它使得开发者可以使用 JavaScript 来编写服务端的应用。Node.js 提供了大量的命令行工具,以下是一些最常用的 Node.js 命令: 1. node 运行 JavaScript 文件:node [fil…...
LeetCode 2. 两数相加
目录 题目题目描述示例 1:示例 2:示例 3:提示:原题链接 题解解题思路代码实现(C) 题目 题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的…...
抖去推无人直播+矩阵托管+AI文案撰写一体化工具如何开发搭建
一、 开发和搭建抖去推无人直播矩阵托管AI文案撰写一体化工具需要以下步骤: 确定功能需求:确定抖去推无人直播、矩阵托管和AI文案撰写的具体功能需求,如直播推流、直播管理、托管服务、AI文案生成等。 技术选型:选择适合开发该工…...
【鸿蒙HarmonyOS开发笔记】常用组件介绍篇 —— 弹窗组件
简介 弹窗是移动应用中常见的一种用户界面元素,常用于显示一些重要的信息、提示用户进行操作或收集用户输入。ArkTS提供了多种内置的弹窗供开发者使用,除此之外还支持自定义弹窗,来满足各种不同的需求。 下面是所有涉及到的弹窗组件官方文档…...
【嵌入式学习】Qtday03.21
一、思维导图 二、练习 自由发挥登录窗口的应用场景,实现一个登录窗口界面。(不要使用课堂上的图片和代码,自己发挥,有利于后面项目的完成) 要求: 1. 需要使用Ui界面文件进行界面设计 2. ui界面上的组件…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
