时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测
时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测
目录
- 时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果



基本介绍
1.Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测(完整源码和数据),单变量时间序列预测,运行环境matlab2023及以上,excel数据,方便替换;
2.评价指标RMSE、MAPE、MAE、MSE、R2等;
3.程序语言为matlab,程序可出预测效果图,误差分析图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

BiTCN-GRU是一种结合了双向时间卷积神经网络(BiTCN)和门控循环单元(GRU)的模型,用于时间序列预测。
双向时间卷积神经网络(BiTCN)是一种基于卷积神经网络(CNN)的模型,具有双向信息传递的能力。它通过使用一维卷积层来捕捉时间序列中的局部和全局特征,并在模型中引入双向连接,以同时考虑过去和未来的上下文信息。
门控循环单元(GRU)是一种循环神经网络(RNN)的变种,具有门控机制来控制信息的流动。GRU通过使用更新门和重置门来决定如何更新和传递隐藏状态,从而有效地捕捉时间序列中的长期依赖关系。
结合BiTCN和GRU,可以构建一个双向的时间序列模型。首先,BiTCN用于提取时间序列数据的局部和全局特征,捕捉序列中的空间相关性。然后,GRU作为时间维度的处理单元,利用其门控机制来捕捉序列中的时间相关性。
整个模型的工作流程如下:
输入时间序列数据经过一维卷积层,使用BiTCN提取局部和全局特征。
BiTCN的输出作为GRU的输入,用于建立时间维度上的循环依赖关系。
GRU模型通过门控机制来更新和传递隐藏状态,从而在时间维度上捕捉长期依赖关系。
最后,可以根据具体的预测任务选择适当的输出层,例如全连接层进行回归或分类。
BiTCN-GRU模型的优势在于它能够同时考虑时间序列数据的空间和时间相关性,从而更好地捕捉序列中的动态模式和长期依赖关系。这种结合的方式可以提高时间序列预测的准确性和泛化能力,适用于各种时间序列预测任务。
程序设计
- 完整源码和数据获取方式资源出下载Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测 。
% 添加残差块到网络lgraph = addLayers(lgraph, layers);% 连接卷积层到残差块lgraph = connectLayers(lgraph, outputName, "conv1_" + i);% 创建 TCN反向支路flip网络结构Fliplayers = [FlipLayer("flip_" + i) % 反向翻转convolution1dLayer(1, numFilters, Name = "convSkip_"+i); % 反向残差连接convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv2_" + i) % 一维卷积层layerNormalizationLayer % 层归一化spatialDropoutLayer(dropoutFactor) % 空间丢弃层convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal") % 一维卷积层layerNormalizationLayer % 层归一化reluLayer % 激活层spatialDropoutLayer(dropoutFactor, Name="drop" + i) % 空间丢弃层];% 添加 flip 网络结构到网络lgraph = addLayers(lgraph, Fliplayers);% 连接 flip 卷积层到残差块lgraph = connectLayers(lgraph, outputName, "flip_" + i);lgraph = connectLayers(lgraph, "drop" + i, "add_" + i + "/in3");lgraph = connectLayers(lgraph, "convSkip_"+i, "add_" + i + "/in4");% 残差连接 -- 首层if i == 1% 建立残差卷积层% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
end
% CSDN 机器学习之心
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:
时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测
时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测 目录 时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiTCN-GRU双向时间卷积神经网络结…...
学习笔记Day14:Linux下软件安装
软件安装 Anaconda 所有语言的包(package)、依赖(dependency)和环境(environment)管理器,类似应用商店 Conda < Miniconda < Anaconda(有交互界面) Linux下Miniconda即可 安装Miniconda 搜索北外/清华miniconda镜像网站ÿ…...
【CXL协议-事务层之CXL.io(3)】
3.1 CXL.io CXL.io 为 I/O 设备提供非一致的加载/存储接口。 图 14 显示了 CXL.io 事务层在 Flex Bus 分层结构中的位置。 交易类型、交易数据包格式、基于信用的流量控制、虚拟通道管理和交易排序规则遵循PCIe定义; 请参阅 有关详细信息,请参阅 PCI Ex…...
如何自己构建 Ollama 模型
如何自己构建 Ollama 模型 0. 引言1. 下载原始模型2. 创建 Modelfile 文件3. 构建 Ollama 模型4. 运行自构建的 Ollama 模型 0. 引言 针对模型新出的大模型,可能 Ollama Models Library 不提供,或者会在今后的某个时点提供。还有可能 Ollama Models Lib…...
5.84 BCC工具之tcpretrans.py解读
一,工具简介 tcpretrans工具追踪内核TCP重传函数,以显示这些重传的详细信息。 它专门用于追踪TCP重传事件。在网络通信中,重传是由于数据包丢失、损坏或延迟到达而需要重新发送的情况。tcpretrans通过利用Linux内核中的BPF(Berkeley Packet Filter)机制,能够实时捕获和…...
从0到1实现RPC | 03 重载方法和参数类型转换
一、存在的问题 1.重载方法在当前的实现中还不支持,调用了会报错。 2.类型转换也还存在问题。 假设定义的接口如下,参数是float类型。 在Provider端接受到的是一个Double类型,这是因为web应用接收的请求后处理的类型。 在反射调用的时候就会…...
Matlab之已知2点绘制长度可定义的射线
目的:在笛卡尔坐标系中,已知两个点的位置,绘制过这两点的射线。同时射线的长度可以自定义。 一、函数的参数说明 输入参数: PointA:射线的起点; PointB:射线过的零一点; Length&…...
虚拟机安装Linux系统,FinalShell远程连接Linux
1.虚拟机安装CentOS系统 2. 查看CentOS系统的ip地址 3. FinalShell远程连接Linux 3.虚拟机快照(存档) 确保虚拟机关机,找到快照模拟器 恢复快照...
MacOS Xcode 使用LLDB调试Qt的 QString
环境: MacOS: 14.3Xcode: Version 15.0Qt:Qt 6.5.3 前言 Xcode 中显示 预览 QString 特别不方便, 而Qt官方的 lldb 脚本debugger/lldbbridge.py一直加载失败,其他第三方的脚本都 不兼容当前的 环境。所以自己研究写…...
C/C++代码性能优化——编程实践
1. 编程实践 在一些关键的地方,相应的编程技巧能够给性能带来重大提升。 1.1. 参数传递 传递非基本类型时,使用引用或指针,这样可以避免传递过程中发生拷贝。参数根据是否需要返回,相应加上const修饰,代码更安全&am…...
JVM—内存可见性
什么是可见性 可见性:一个线程对共享变量值的修改,能够及时地被其他线程看到共享变量:如果一个变量在多个线程的工作内存中都存在副本,那么这个变量就是这几个线程的共享变量 Java内存模型(JMM) Java内存模型(Java Memory Model)描述了Java程序中各种…...
VScode手动安装vsix格式插件,提示安装插件与code版本不兼容问题
问题描述: vscode手动按装插件提示"插件不兼容code版本 原因方案:修改安装包内的package.json文件中的版本号与vscode版本号对应即可 解决步骤 以(adpyke.codesnap-1.3.4.vsix)安装包为例 手动安装vscode弹出 无法安装扩展“adpyke.codesnap-1.3.4”,它与 …...
K8S Storage
概述 一般情况下,K8S中的Pod都不应该将数据持久化到Pod中,因为Pod可能被随时创建和删除(扩容或缩容),即便是StatefulSet或Operator的Pod,也都不建议在Pod里存放数据,可以将数据持久化到Host上。…...
Day54-nginx限速-访问日志-错误日志精讲
Day54-nginx限速-访问日志-错误日志精讲 测试请求限制连接限制(limit_conn)下载速度限制(limit_rate) ngx_http_core_module综合配置1.Nginx状态监控1.1 Nginx status介绍1.2 Nginx status配置1.3 基本状态数据如下所示:(注意本地…...
SQL经典面试题
这里写目录标题 1 背概念2 学例子 1 背概念 1 事务 事务是最小的不可在分的工作单元,事务的操作要么同时成功,要么同时失败。 ACID: 原子性、一致性、隔离性、持久性 2 约束 主键约束;外键约束(少用,会增加程序的耦合性ÿ…...
Java基础知识总结(14)
map集合 /* java.util.Map接口中常用的方法 1、Map和Collection 没有继承关系 2、Map集合以key和value的方式存储数据:键值对key和valuea都是引用数据类型key和value都是存储对象的内存地址key起到主导地位,value是key的一个附属品 3、Map接口中常用的方…...
MacOS - GCC 版本升级解决方案
Mac 中自带的 GCC 版本是 4.2.1,由于版本太低,在很多操作的时候会报错。因此需要对其进行升级,这里使用 Homebrew 来下载最新的 GCC。 安装 Homebrew MacOS 的终端中输入如下的命令来安装 Homebrew $ /usr/bin/ruby -e "$(curl -fsSL …...
小程序绕过 sign 签名
之前看到了一篇文章 小程序绕过sign签名思路 之前在做小程序渗透时也遇到了这种情况,但是直接放弃测试了,发现这种思路后,又遇到了这种情况,记录下过程 并没有漏洞分享,仅仅是把小程序也分享出来,方便大家…...
【Canvas与艺术】绘制动态太极图
【图例】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>绘制旋转太极图</title><style type"text/css"&g…...
Llama 2 模型
非常清楚!!!Llama 2详解 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/649756898?utm_campaignshareopn&utm_mediumsocial&utm_psn1754103877518098432&utm_sourcewechat_session一些补充理解: 序列化ÿ…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...
RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程. 本…...
