当前位置: 首页 > news >正文

全智能深度演进,一键成片让视频创作颠覆式提效

全智能一键成片,让内容创作的「边际成本」逼近于零。

大模型和AIGC技术的发展,可以用“日新月异”来形容,其迭代速度史无前例,涌现出的各类垂直应用模型,也使得音视频行业的应用场景更加广泛和多样化。

然而,视频化浪潮汹涌、视频“消费”速度不断加快,视频内容消费的需求与供给的矛盾依然突出。

当云和AI走向深度融合,AI不再仅仅作为单点能力应用在某个环节,一切皆向着“全智能”演进。

阿里云「云端智能剪辑」正式推出一键成片能力,让视频生产力不断“提速”,内容生产成本不断降低,以“全智能”带来视频创作颠覆式提效。

一键成片的2种“思路”

全智能的「一键成片」能力,支持以下两种成片思路方案。

l 方案一:脚本化自动成片

适合于已有比较明确的成片逻辑结构和对应的素材准备,通过设定脚本结构及期望成片数量,自动化批量完成制作。

l 方案二:智能图文匹配成片

适合于已有素材准备,期望能根据口播文案(支持AI智能生成),自动截取并智能匹配素材中的关联资源片段,一键实现完美音画同步的效果。

如上图所示,以制作哈尔滨文旅视频为例,当视频结构已明确为“城市风貌”、“历史底蕴”、“吃喝玩乐”,并为每个节点关联对应的图片或视频素材时,方案一「脚本化自动成片」将按照结构顺序整体排布,各节点随机选择素材,根据搭配口播文稿进行时长自适应,一键批量生成指定数量的视频。

当已确定该视频的口播文案内容时,可使用方案二「智能图文匹配成片」提交期望匹配的对应素材资源,系统将针对每句口播文本在素材中智能截取片段,完成视频制作。

3大核心亮点

内容生产「全智能提效」

运用大模型技术对文案稿件(支持AI智能生成)进行智能化分析,依据分析结果自动匹配对应素材,并通过AI音色合成、片段优选、自动对齐、花字字幕及背景样式智能组合等操作,一键实现内容生产的全链路、全智能提效。

多维场景「高自由扩展」

基于深厚的剪辑制作服务能力积淀,在成片风格、样式、分辨率尺寸格式等维度,具备高自由度的个性化定制能力及扩展性,满足不同场景应用下的多样化需求。

门槛降低「一站式成片」

由AI智能生成完成极大部分繁琐工作,结果可导入可视化编辑界面(即将上线)由人工完成极小部分“精修”美化和把控,通过更高效的内容生产方式填补内容缺口,极大节省人力、进一步降低内容生产的成本与门槛。

可探索的N个场景

场景1:影视解说

如果你时常刷刷“电子榨菜”,那么一定看过“注意看眼前的男人叫小帅,眼前的女人叫小美”之类的视频,这些3-5分钟解说完一部电影或电视剧的视频,其实有着较为格式化的制作模版,如果依靠人工进行文本内容提炼、剧集画面匹配、逐帧裁剪、时长控制等,无法高效、低成本满足大众对于内容消费的需求。

通过「一键成片」,将解说文本与对应剧集关联并提交,大模型会将解说场景自动定位剧情片段,在选择智能配音后,便能按照预期片长快速完成全局的镜头画面、口播音频的对齐生成。

场景2:赛事/综艺“拆条”

高价购买了赛事版权或是高成本拍摄综艺,如何发挥它们的“长尾效应”?一个出圈的“看点”短视频片段,会吸引观众启动对长视频内容的消费,带火一场已经结束的比赛或综艺节目。

在当内容“拆条”速度快30秒,单条视频可多收获2000万流量(据咪咕视讯相关报道)。通过「一键成片」,将创意文案与版权视频关联匹配素材,结合花字字幕、背景样式、成片风格需求,在更短的时间内产出更多高质量可用的视频。

场景3:新闻视频制作

在当前新闻视频化的趋势下,记者、编辑需要基于文字稿件进行新闻视频制作。其中,素材收集和排版工作占到工作时长的80%以上,而新闻类内容对内容准确度和素材质量要求较高,如果使用生成式大模型或简单的检索匹配,产生的内容从质量到准确度可控性差,难以实际落地应用。

通过「一键成片」能力,将新闻稿件关联至指定素材库,大模型将针对稿件自动分析、分段,并针对每段关键信息从资源库片段智能截取,进行素材优选、有序拼接、AI口播对齐、模板整合等全智能操作,并可人工预览及手动微调,从而在分钟级完成新闻类成片。

上述三个场景之外,「一键成片」还可广泛运用于其他N个场景。如:营销视频的批量化混剪,快速分发内容带来更多流量曝光;或是助力观点类、知识类、热点类等PGC高效完成视频化制作、保持内容输出频率,降低因视频剪辑带来的创作门槛和工作量。

AIGC时代下,聚焦智能媒体服务,阿里云视频云不断探索内容生产力变革的更多可能,在云端智能剪辑产品之上,以创新升级的「一键成片」能力,拓展更多应用场景的想象空间。

欢迎加入官方答疑「钉钉群」咨询交流:48335001108

相关文章:

全智能深度演进,一键成片让视频创作颠覆式提效

全智能一键成片,让内容创作的「边际成本」逼近于零。 大模型和AIGC技术的发展,可以用“日新月异”来形容,其迭代速度史无前例,涌现出的各类垂直应用模型,也使得音视频行业的应用场景更加广泛和多样化。 然而&#xff…...

uniapp(vue3) H5页面连接打印机并打印

一、找到对应厂商打印机的驱动并在windows上面安装。查看是否安装完成可以在:控制面板->查看设备和打印机,找到对应打印机驱动是否安装完成 二、打印机USB连接电脑 三、运行代码调用浏览器打印,主要使用的是window.print()功能。下面使用…...

Android视角看鸿蒙第八课(module.json5中的各字段含义之abilities)下

Android视角看鸿蒙第八课(module.json5中的各字段含义之abilities)下 导读 上篇文章开始学习abilities下的各字段含义,因为篇幅原因只学习了name、srcEntry、description、icon和label字段的含义和用法, 这篇文章继续学习和了解其他字段。 …...

设计模式 适配器模式

1.背景 适配器模式,这个模式也很简单,你笔记本上的那个拖在外面的黑盒子就是个适配器,一般你在中国能用,在日本也能用,虽然两个国家的的电源电压不同,中国是 220V,日本是 110V,但是这…...

前端面试题详解

前端面试 1.app如何实现登陆成功,卸载app重新安装再进入获取上一次已经登陆的信息? 要实现前端APP在登录成功后,即使卸载并重新安装也能获取上一次已经登录的信息,通常涉及以下几个关键步骤: 1. 使用持久化存储 在APP…...

抖音,剪映,TikTok,竖屏短视频转场pr模板视频素材

120个叠加效果视频转场过渡素材,抖音,剪映,TikTok,短视频转场pr模板项目工程文件。 效果:VHS、光效、胶片、霓虹灯闪光、X射线、信号、老电影等。 适用软件:Adobe Premiere Pro 2018 12.0或更高版本。 视频素材与大多数应用程序兼容&#xff…...

python网络相册设计与实现flask-django-nodejs-php

此系统设计主要采用的是python语言来进行开发,采用django框架技术,框架分为三层,分别是控制层Controller,业务处理层Service,持久层dao,能够采用多层次管理开发,对于各个模块设计制作有一定的安…...

设计模式: 外观模式

文章目录 一、什么是外观模式二、外观模式结构1、外观模式的主要角色包括:2、外观模式通常适用于以下情况: 三、优点 一、什么是外观模式 外观模式(Facade Pattern)是一种结构型设计模式,它提供了一个统一的接口&…...

Samba局域网共享文件

基于两个协议:smb协议(Server Message Block,服务消息块)和cifs协议(Common Internet File System,通用互联网文件系统) 两个主进程:smbd 和nmbd进程。 smbd:提供对服务…...

基于FPGA实现的UDP协议栈设计_汇总

基于FPGA实现的千兆以太网UDP协议栈设计(汇总篇) 1. MAC设计 2. IP层设计 3. ARP层设计 4. UDP层设计 5. ICMP层设计 6. 仲裁器设计 8. RGMII接口设计 9. 跨时钟域设计...

maven手动上传的第三方包 打包项目报错 Could not find xxx in central 解决办法

背景: 在Maven私服手动上传了第三方的jar包, 只有jar包, 没有pom文件, 项目在ide中可以正常编译启动,但打包报错无法找到jar包 解决办法: 上传jar包的时候, 点击生成pom. 则打包的时候不会报错...

利用Scala与Apache HttpClient实现网络音频流的抓取

概述 在当今数字化时代,网络数据的抓取和处理已成为许多应用程序和服务的重要组成部分。本文将介绍如何利用Scala编程语言结合Apache HttpClient工具库实现网络音频流的抓取。通过本文,读者将学习如何利用强大的Scala语言和Apache HttpClient库来抓取网…...

Linux(openEuler)部署SpringBoot前后端分离项目(Nginx负载均衡)

假如数据库在本地,没有放在Linux中 1.先把数据库中root的主机改成% 2.项目中的数据库链接配置换成本机ip 3.打包 4.把打包好的jar包放到Linux中 一般把jar包放到opt下 5.把前端部分拷贝到Linux的nginx中 5.1在package.json中修改build的值为图中这样 5.2同时由于在…...

InnoDB 缓存

本文主要聊InnoDB内存结构, 先来看下官网Mysql 8.0 InnoDB架构图 MySQL :: MySQL 8.0 Reference Manual :: 17.4 InnoDB Architecture 如上图所示,InnoDB内存主要包含Buffer Pool, Change Buffer, Log Buffer, Adaptive Hash Index Buffer Pool 其实 buffer pool 就是内存中的…...

目标检测——PP-YOLOE-R算法解读

PP-YOLO系列,均是基于百度自研PaddlePaddle深度学习框架发布的算法,2020年基于YOLOv3改进发布PP-YOLO,2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet,2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列,所以放一起解…...

轻松解锁微博视频:基于Perl的下载解决方案

引言 随着微博成为中国最受欢迎的社交平台之一,其内容已经变得丰富多彩,特别是视频内容吸引了大量用户的关注。然而,尽管用户对微博上的视频内容感兴趣,但却面临着无法直接下载这些视频的难题。本文旨在介绍一个基于Perl的解决方…...

asp.net mvc 重新引导视图路径,改变视图路径

asp.net mvc 重新引导视图路径,改变视图路径 使用指定的控制器上下文和母版视图名称来查找指定的视图 通过本文学习,你可以根据该技法,去实现,站点自定义皮肤,手机站和电脑站,其他设备站点,在不…...

《优化接口设计的思路》系列:第九篇—用好缓存,让你的接口速度飞起来

一、前言 大家好!我是sum墨,一个一线的底层码农,平时喜欢研究和思考一些技术相关的问题并整理成文,限于本人水平,如果文章和代码有表述不当之处,还请不吝赐教。 作为一名从业已达六年的老码农&#xff0c…...

专业130+总分410+西南交通大学924信号与系统考研经验西南交大电子信息通信工程,真题,大纲,参考书。

初试分数出来,专业课924信号与系统130,总分410,整体上发挥正常,但是还有遗憾,其实自己可以做的更好,总结一下经验,希望对大家有所帮助。专业课:(130) 西南交…...

MySQL数据库 - 存储引擎

一. mysql 存储引擎的相关知识 1.1 存储引擎的概念 MySQL中的数据用各种不下同的技术存储在文件中,每一种技术都使用不同的存储机制、索引技巧、锁定水平并最终提供不同的功能和能力,这些不同的技术以及配套的功能在MySQL中称为存储引擎。存储引擎是My…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...