Pytorch:nn.Upsample() 和nn.ConvTranspose2d()
nn.Upsample
原理
nn.Upsample
是一个在PyTorch中进行上采样(增加数据维度)的层,其通过指定的方法(如nearest邻近插值或linear、bilinear、trilinear线性插值等)来增大tensor的尺寸。这个层可以在二维或三维数据上按照给定的尺寸或者放大比例来调整输入数据的维度。
用法
import torch.nn as nn# 创建一个上采样层,通过比例放大
upsample = nn.Upsample(scale_factor=2, mode='nearest')# 创建一个上采样层,通过目标尺寸放大
upsample = nn.Upsample(size=(height, width), mode='bilinear', align_corners=True)# 使用上采样层
output = upsample(input)
nn.ConvTranspose2d
原理
nn.ConvTranspose2d
是一个二维转置卷积(有时也称为反卷积)层,它是标准卷积的逆操作。转置卷积通常用于生成型模型(如生成对抗网络GANs),或者在卷积神经网络中进行上采样操作(与nn.Upsample相似,但是通过可学习的卷积核进行)。转置卷积层有权重和偏置,其可以在训练过程中学习,以便更好地进行上采样。
用法
import torch.nn as nn# 创建一个转置卷积层
conv_transpose = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding=1)# 使用转置卷积层
output = conv_transpose(input)
比较
nn.Upsample
使用插值方式进行上采样,没有可学习的参数。nn.ConvTranspose2d
通过转置卷积操作上采样,并且有可学习的参数,这可以在一定程度上给予模型更多的灵活性和表现力。
在一些场景下,nn.ConvTranspose2d
可能导致所谓的**“棋盘效应”(checkerboard artifacts),这是由于某些上采样步骤的重叠造成的**。相比之下,nn.Upsample
通常不会引入这样的效应,因为它的插值方法是固定的。
根据具体的应用场景和需求,选择最合适的上采样层是很重要的。
- 如果你只是想简单地增大特征图的尺寸,并且不需要额外的模型可学习能力,那么 nn.Upsample 是一个更快速和简洁的选择。
- 如果你需要模型在上采样过程中有更多的控制能力,那么 nn.ConvTranspose2d 是更好的选择。
性能对比
在性能对比方面,nn.Upsample() 和 **nn.ConvTranspose2d()**具有各自的特点和最佳应用场景,两者在速度、内存占用和输出质量方面有所不同。
计算资源(速度与内存):
- nn.Upsample():通常,上采样层相对来说计算代价更小,尤其是当使用像"nearest"这类简单的插值方法时。上采样层没有可训练的参数,因此内存占用也比较低。如果选择更复杂的插值方法,比如"bilinear"或"bicubic",计算代价会增加,但通常仍然低于转置卷积。
- nn.ConvTranspose2d():转置卷积层包含可训练的参数,因此计算代价和内存占用通常大于上采样。每次在传递数据时,都会执行卷积运算,这比上采样的插值更加计算密集。
输出质量:
- nn.Upsample():由于它主要是基于某种插值方法来放大特征图,所以可以快速地执行操作,但无法保证放大后的图像质量,尤其是在某些应用中,可能会出现明显的、不连续的模式。
- nn.ConvTranspose2d():提供了一种可学习的方式来增加特征图的尺寸。训练过程中,网络可以学习如何更有效地上采样,这可能会提供更自然和连贯的输出图像。这在任务如图像重建或生成时尤其有用。
训练时间:
-
nn.Upsample():因为没有额外的参数需要训练,使用上采样的网络通常训练更快。
-
nn.ConvTranspose2d():训练时间可能会更长,因为存在额外的权重需要优化。
应用场景:
- nn.Upsample():更适合于当需要快速且简单地放大特征图,并且没有必要在上采样过程中进行复杂学习时。
- nn.ConvTranspose2d():更适合那些需要网络在上采样过程中进行学习,如自动编码器的解码器部分、生成对抗网络的生成器部分,以及在某些分割任务中常见的全卷积网络。
最后,你应选择基于你的具体需求,例如输出质量、推理时间、模型的复杂度和可训练性等因素进行选择。实际上,在一些现代的模型架构中,开发者可能会混合使用上采样和转置卷积层,以在保证输出质量的同时优化模型性能。
相关文章:
Pytorch:nn.Upsample() 和nn.ConvTranspose2d()
nn.Upsample 原理 nn.Upsample 是一个在PyTorch中进行上采样(增加数据维度)的层,其通过指定的方法(如nearest邻近插值或linear、bilinear、trilinear线性插值等)来增大tensor的尺寸。这个层可以在二维或三维数据上按…...

百度交易中台之系统对账篇
作者 | 天空 导读 introduction 百度交易中台作为集团移动生态战略的基础设施,面向收银交易与清分结算场景,赋能业务、提供高效交易生态搭建。目前支持百度体系内多个产品线,主要包括:度小店、小程序、地图打车、文心一言等。本文…...

Linux 服务升级:MySQL 主从(半同步复制) 平滑升级
目录 一、实验 1.环境 2.Mysql-shell 检查工具兼容性 3.逻辑备份MySQL数据 4.备份MySQL 数据目录、安装目录、配置文件 5.MySQL 升级 6.master节点 使用systemd管理mysql8 7. slave1 节点升级 8. slave2 节点升级 9.半同步设置 二、问题 1.mysqldump备份报错 2.Inn…...

python与excel第一节
python与excel第一节 由于excel在日常办公中大量使用,我们工作中常常会面对高频次或者大量数据的情况。使用python语言可以更加便捷的处理excel。 python与vba的比较 python语法更加简洁,相较于vba冗长复杂的语法,python更加容易学习。 p…...
开发者必备神器 | 全能AI工具助你免费提升开发效率,每日轻松编写代码
全能AI工具助你免费提升开发效率,每日轻松编写代码 前提介绍CodeGeex多语言生成模型支持的编程语言适配多种主流IDE多种IDE插件支持安装VS Code的CodeGeeX插件安装Jetbrains IDEs插件(IntelliJ IDEA,PyCharm)功能实现1. 自动生成和补全代码2. 多语言的代码翻译3. 自动添加注释…...

【RabbitMQ | 第七篇】RabbitMQ实现JSON、Map格式数据的发送与接收
文章目录 7.RabbitMQ实现JSON、Map格式数据的发送与接收7.1消息发送端7.1.1引入依赖7.1.2yml配置7.1.3RabbitMQConfig配置类——(非常重要)(1)创建交换器方法(2)创建队列方法(3)绑定…...

ios symbolicatecrash 符号化crash
一、准备 1.1 .crash 文件获取 设备连接电脑 打开XCode, 依次 XCode -> Windows -> Device and Simulator -> Open Recent Logs 找到 (对应app名+时间点) -> 右键 Show in Finder 1.2 .dSYM 和 .app 文件获取 .dSYM是十六进制函数地址映射信息的中转文件,调试的…...
Rust 语言的 HashMap
HashMap 在 Rust 中是一个非常常用且强大的数据结构,它允许你存储键值对(key-value pairs),并且能够快速地基于键检索值。 下面是使用 HashMap 的一些基本示例: 首先,你需要在你的文件中引入 HashMap: use std::col…...

【目标检测基础篇】目标检测评价指标:mAP计算的超详细举例分析以及coco数据集标准详解(AP/AP50/APsmall.....))
学习视频: 霹雳吧啦Wz-目标检测mAP计算以及coco评价标准 【目标检测】指标介绍:mAP 1 TP/FP/FN TP(True Positive) : IoU>0.5的检测框数量(同一Ground truth只计算一次)FP(False Positive) : IoU<0.5的检测框(或者是检测到同一个GT的多余检测框的…...
服务器与普通电脑的区别,普通电脑是否可以作为服务器使用
服务器在我们日常应用中非常常见,手机APP、手机游戏、PC游戏、小程序、网站等等都需要部署在服务器上,为我们提供各种计算、应用服务。服务器也是计算机的一种,虽然内部结构相差不大,但是服务器的运行速度更快、负载更高、成本更高…...

长安链Docker Java智能合约引擎的架构、应用与规划
#功能发布 长安链3.0正式版发布了多个重点功能,包括共识算法切换、支持java智能合约引擎、支持后量子密码、web3生态兼容等。我们接下来为大家详细介绍新功能的设计、应用与规划。 在《2022年度长安链开源社区开发者调研报告》中,对Java合约语言支持是开…...

STM32 ESP8266模块的曲折探索
这是本文的配套资料,最终工程请参考 新_ESP8266资料\stm32f103成功移植的项目 【免费】stm32f103c8t6esp8266资料资源-CSDN文库 一、等到了ready 产品参数 我使用的是ai-thinker的esp8266-01s,以下为产品规格书 引脚定义: 依据引脚定义&…...

letcode::根据二叉树创建字符串
根据二叉树创建字符串 题目描述: 给你二叉树的根节点 root ,请你采用前序遍历的方式,将二叉树转化为一个由括号和整数组成的字符串,返回构造出的字符串。 空节点使用一对空括号对 “()” 表示,转化后需要省略所有不影…...

6个免费的ChatGPT网站
AI 大模型的出现给时代带来了深远的影响: 改变了产业格局:AI 大模型的发展推动了人工智能技术在各行业的广泛应用,改变了传统产业的运作方式,促进了新兴产业的崛起,如智能驾驶、医疗健康、金融科技等。提升了科学研究…...
每天几道面试题|Kafka(一)基础概念
文章目录 什么是 Apache Kafka?它是用来解决什么问题的?Kafka 的主要组件有哪些?它们各自的作用是什么?Kafka 中的生产者和消费者是什么?它们之间的关系是怎样的?Kafka 中的分区是什么?为什么要…...

PLC与智能制造——蛋糕增大?谁来先行?
PLC的特点 图1 PLC的特点 PLC与智能制造 “中国制造2025”把智能制造作为自动化和信息化深度融合的主攻方向,其支撑在于强大的工业自动化系统,而PLC是工业自动化系统的“大脑”,它不仅可控制机械装备和生产线,还是信息的采集器和…...

基于spring boot框架的发艺美发店管理系统
摘 要 系统根据现有的管理模块进行开发和扩展,采用面向对象的开发的思想和结构化的开发方法对发艺美发店管理的现状进行系统调查。采用结构化的分析设计,该方法要求结合一定的图表,在模块化的基础上进行系统的开发工作。在设计中采用“自下而…...
Linux - IO
目录 四种典型IO方式阻塞IO非阻塞IO信号驱动异步IO 多路转接IOselect模型接口 四种典型IO方式 IO:输入输出–过程:等待IO就绪,进行数据拷贝 阻塞:为了完成某功能,发起一个调用,若完成功能条件不具备&#…...

Cmake和opencv环境安装
1 Cmake下载及安装 Download CMake 根据需要下载,历史版本下载方法如下 CMake 的版本号中的后缀 "rc1" 和 "rc2" 表示 Release Candidate 1 和 Release Candidate 2,它们都是候选版本,用于测试新功能和修复 bug。通常情…...
Redis是如何避免“数组+链表”的过长问题
目录 一、扩展和收缩 二、使用高质量的哈希函数 三、使用跳跃表(skiplist)或其他数据结构 四、哈希表分片 一、扩展和收缩 Redis通过动态调整哈希表的大小来解决“数组链表”的长度问题,这涉及到两个过程:扩展(Expand)和收缩(S…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...