Amuse .NET application for stable diffusion
Amuse
github地址:https://github.com/tianleiwu/Amuse
.NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system

Welcome to Amuse!
Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.
Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.
Experience the power of AI without compromise
Features
- Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
- Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
- Image To Image: Transform images seamlessly using advanced machine learning models.
- Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
- Model Management: Install, download and manage all your models in a simple user interafce.
Amuse provides compatibility with a diverse set of models, including
- StableDiffusion 1.5
- StableDiffusion Inpaint
- SDXL
- SDXL Inpaint
- SDXL-Turbo
- LatentConsistency
- LatentConsistency XL
- Instaflow
Why Choose Amuse?
Amuse isn't just a tool; it's a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.
Key Highlights
- Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
- Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
- Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.
Amuse is not about building or deploying; it's about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.
Paint To Image
Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it's digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.
Text To Image
Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images
Image To Image
Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more
Image Inpaint
Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It's used for tasks like photo restoration and object removal, creating seamless and convincing results.
Model Manager
Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.
Getting Started
Get started now with our helpful documentation: https://github.com/Stackyard-AI/Amuse/blob/master/Docs/GettingStarted.md
Hardware Requirements
Compute Requirements
Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse
| Device | Requirement |
|---|---|
| CPU | Any modern Intel/AMD |
| AMD GPU | Radeon HD 7000 series and above |
| Intel | HD Integrated Graphics and above (4th-gen core) |
| NVIDIA | GTX 600 series and above. |
Memory Requirements
AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse
| Model | Device | Precision | RAM/VRAM |
|---|---|---|---|
| Stable Diffusion | GPU | 16 | ~4GB |
| Stable Diffusion | CPU/GPU | 32 | ~8GB |
| SDXL | CPU/GPU | 32 | ~18GB |
System Requirements
Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.
| Build | Device | Requirements |
|---|---|---|
| CPU | CPU | None |
| DirectML | CPU, AMD GPU, Nvidia GPU | At least Windows10 |
| CUDA | Nvidia GPU | CUDA 11 and cuDNN toolkit |
| TensorRT | Nvidia GPU | CUDA 11 , cuDNN and TensorRT libraries |
Realtime Requirements
Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards
| Device | Model | FPS |
|---|---|---|
| GTX 2080 | LCM_Dreamshaper_v7_Olive_Onnx | 1-2 |
| RTX 3090 | LCM_Dreamshaper_v7_Olive_Onnx | 3-4 |
相关文章:
Amuse .NET application for stable diffusion
Amuse github地址:https://github.com/tianleiwu/Amuse .NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system Welcome to Amuse! Amuse is a profes…...
【机器学习-05】模型的评估与选择
在前面【机器学习-01】机器学习基本概念与建模流程的文章中我们已经知道了机器学习的一些基本概念和模型构建的流程,本章我们将介绍模型训练出来后如何对模型进行评估和选择等 1、 误差与过拟合 学习器对样本的实际预测结果与真实值之间的差异,我们称之…...
【11】工程化
一、为什么需要模块化 当前端工程到达一定规模后,就会出现下面的问题: 全局变量污染 依赖混乱 上面的问题,共同导致了代码文件难以细分 模块化就是为了解决上面两个问题出现的 模块化出现后,我们就可以把臃肿的代码细分到各个小文件中,便于后期维护管理 前端模块化标准…...
Python中requests、aiohttp、httpx性能对比
在Python中,有许多用于发送HTTP请求的库,其中最受欢迎的是requests、aiohttp和httpx。这三个库的性能和功能各不相同,因此在选择使用哪个库时,需要考虑到自己的需求和应用场景。 首先,让我们来了解一下这三个库的基本…...
网络原理(5)——IP协议(网络层)
目录 一、IP协议报头介绍 1、4位版本 2、4位首部长度 3、8位服务器类型 4、16位总长度 5、16位标识位 6、3位标志位 7、13位偏移量 8、8位生存空间 9、8位协议 10、16位首部检验和 11、32位源IP地址 12、32位目的IP地址 二、IP协议如何管理地址? 1、动…...
GE IS200AEPAH1BKE IS215WEPAH2BB是两种不同的压力测量模块
GE IS200AEPAH1BKE和IS215WEPAH2BB是两种不同的压力测量模块,它们都属于GE(通用电气)公司的产品。 具体来说,以下是这两种模块的一些特点和应用: IS200AEPAH1BKE:这款模块适用于需要高性价比的压力测量应用…...
Rust 与 C++ ,孰优孰劣?
Rust 与 C 是两种高级系统级编程语言,它们都在追求性能、控制底层硬件细节的同时强调安全性。以下是两者的详细对比: 目标与理念 Rust:由 Mozilla 主导开发,目标是构建一种既快速又安全的系统级编程语言,特别是解决 C…...
MySQL、Oracle的时间类型字段自动更新:insert插入、update更新时,自动更新时间戳
1.MySQL 支持的字段类型:DATETIME、TIMESTAMP drop table if exists test_time_auto_update; create table test_time_auto_update (id bigint auto_increment primary key comment 自增id,name varchar(8) …...
Testng框架集成新业务
总体框架设计见我另一篇博客:httpclienttestng接口自动化整体框架设计 <block:表示测试用例块> block后面是 测试用例的名称 ||接口名,该接口名在URL.txt里维护接口 ||get\post:表示请求的方法 get_1\2\3\4:代表加密 get: …...
springboot 单元测试
Spring Boot 单元测试是确保代码质量的重要部分,它允许我们在不实际启动整个应用的情况下测试我们的代码。在Spring Boot中,我们通常使用Spring Test模块和JUnit测试框架来编写单元测试。以下是一个简单的Spring Boot单元测试的详细代码介绍:…...
LeetCode---126双周赛
题目列表 3079. 求出加密整数的和 3080. 执行操作标记数组中的元素 3081. 替换字符串中的问号使分数最小 3082. 求出所有子序列的能量和 一、求出加密整数的和 按照题目要求,直接模拟即可,代码如下 class Solution { public:int sumOfEncryptedInt…...
[python] ETL 工作流程 Prefect
Prefect 是一个用于构建、调度和监控数据流程的 Python 库。它提供了一种简单而强大的方式来管理 ETL(Extract, Transform, Load)工作流程。下面是一个简单的示例,演示了如何使用 Prefect 来创建和运行一个简单的任务: 首先&…...
html第一次作业
常用标签 0, 骨架(!tap) <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><t…...
基于java实现的KTV点歌系统
开发语言:Java 框架:ssm 技术:JSP JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclip…...
GPT+向量数据库+Function calling=垂直领域小助手
引言 将 GPT、向量数据库和 Function calling 结合起来,可以构建一个垂直领域小助手。例如,我们可以使用 GPT 来处理自然语言任务,使用向量数据库来存储和管理领域相关的数据,使用 Function calling 来实现领域相关的推理和计算规…...
DeepSeek-coder 微调训练记录
简介 微调过程不再细说, 参考link进行即可. 主要是数据集. 1.3b模型微调训练占用资源信息 top信息 评估 根据DeepSeek-coder的Evaluation试进行对微调后的模型进行评估. 其中的评估库主要是evol-teacher和human-eval. 新建一个eval_ins.sh文件, 填入以下内容 LANG"…...
【Android】【Bluetooth Stack】蓝牙音乐协议分析之音频控制与信息加载(超详细)
1. 精讲蓝牙协议栈(Bluetooth Stack):SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论 2. 欢迎大家关注和订阅,【蓝牙协议栈】和【Android Bluetooth Stack】专栏会持续更新中.....敬请期待! 目录 1. 音乐信息加载 1.1 歌曲信息 1.1.1 key_c…...
ChatGPT无法登录,提示我们检测到可疑的登录行为?如何解决?
OnlyFans 订阅教程移步:【保姆级】2024年最新Onlyfans订阅教程 Midjourney 订阅教程移步: 【一看就会】五分钟完成MidJourney订阅 GPT-4.0 升级教程移步:五分钟开通GPT4.0 如果你需要使用Wildcard开通GPT4、Midjourney或是Onlyfans的话&am…...
程序员表白
啥?!你说程序员老实,认真工作,根本不会什么表白!那你就错了!(除了我) 那今天我们就来讲一下这几个代码!赶紧复制下来,这些代码肯定有你有用的时候! 1.Python爱心代码 im…...
CSS的使用与方法
什么是CSS CSS是层叠样式表。它是一种用于描述网页或者文档外观和样式的标记语言。 层级样式表:就是给HTML标签加样式的。 如果说HTML是个游戏英雄 、那么CSS就是游戏皮肤。 【一】注释语法 /* 注释 */ 【二】CSS的语法结构 选择符 {样式属性: 样式属性值;样…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...
