数据分析-Pandas分类数据的类别排序和顺序
数据分析-Pandas类别的排序和顺序
数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?
数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
数据分析
数据分析-Pandas如何转换产生新列
数据分析-Pandas如何统计数据概况
数据分析-Pandas如何轻松处理时间序列数据
数据分析-Pandas如何选择数据子集
数据分析-Pandas如何重塑数据表-CSDN博客
本文用到的样例数据:
Titanic数据
样例代码:
源代码参考 Pandas如何重塑数据表
源代码参考 python数据分析-数据表读写到pandas
导入关键模块
import pandas as pd
import numpy as np
实验数据分析处理,股票序列,时间序列,信号序列,有时候表格的数据并不完全是数值类型,也有可能是字符串,或者其他数据,需要做分类处理。pandas如何控制数据分类处理呢?需要配置哪些参数?
排序和顺序
如果分类数据是有序的,则类别的顺序是有意义的,就存在某些可能操作,如.min()/.max()
如果分类数据是无序的,如果操作则将引发TypeError
In [88]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], ordered=False))
In [89]: s = s.sort_values()
In [90]: s = pd.Series(["a", "b", "c", "a"]).astype(CategoricalDtype(ordered=True))
In [91]: s = s.sort_values()In [92]: s
Out[92]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a' < 'b' < 'c']In [93]: s.min(), s.max()
Out[93]: ('a', 'c')
也可以设置分类数据为有序,使用函数 as_ordered(),设置为无序,使用函数 as_unordered(),这些函数默认返回一个新的对象。
In [94]: s.cat.as_ordered()
Out[94]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a' < 'b' < 'c']In [95]: s.cat.as_unordered()
Out[95]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): ['a', 'b', 'c']
排序将使用类别定义的逻辑顺序,而不是数据类型的词法,数值顺序,即使对于字符串和数值数据也是如此:
In [96]: s = pd.Series([1, 2, 3, 1], dtype="category")
In [97]: s = s.cat.set_categories([2, 3, 1], ordered=True)
In [98]: sOut[98]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]In [99]: s = s.sort_values()
In [100]: sOut[100]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]In [101]: s.min(), s.max()
Out[101]: (2, 1)
重排序
可以通过Categorical.reorder_categories()对类别进行重新排序。
In [102]: s = pd.Series([1, 2, 3, 1], dtype="category")In [103]: s = s.cat.reorder_categories([2, 3, 1], ordered=True)In [104]: s
Out[104]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]In [105]: s = s.sort_values()In [106]: s
Out[106]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]In [107]: s.min(), s.max()
Out[107]: (2, 1)
请注意新增类别和重排序之间的区别,重新排序意味着 之后对值进行排序的方式会有所不同。
如果是无序的,min(), max()函数都会引起错误,数值操作函数也如此,如median()函数,需要计算均值。
多列排序
如果多个类别列参与排序,类别的排序取决于该列的类别顺序。
In [108]: dfs = pd.DataFrame(.....: {.....: "A": pd.Categorical(.....: list("bbeebbaa"),.....: categories=["e", "a", "b"],.....: ordered=True,.....: ),.....: "B": [1, 2, 1, 2, 2, 1, 2, 1],.....: }.....: ).....: In [109]: dfs.sort_values(by=["A", "B"])
Out[109]: A B
2 e 1
3 e 2
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2
如果更改类别进行重新排序,那么后面的排序也会跟着变化。
In [110]: dfs["A"] = dfs["A"].cat.reorder_categories(["a", "b", "e"])In [111]: dfs.sort_values(by=["A", "B"])
Out[111]: A B
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2
2 e 1
3 e 2
以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。
后面介绍下其他的展示形式。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
大模型查询工具助手之股票免费查询接口
GPT实战系列-简单聊聊LangChain
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-探究GPT等大模型的文本生成-CSDN博客
相关文章:
数据分析-Pandas分类数据的类别排序和顺序
数据分析-Pandas类别的排序和顺序 数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律? 数据表&…...
利用 Claude 3 on Amazon Bedrock 和 Streamlit 的“终极组合”,开发智能对话体验
概述 通过本文,您将学会如何利用 Streamlit 框架快速搭建前端交互界面。该界面将集成图像上传功能,让用户可以方便地提交待处理图片。在后端,我们将借助 Amazon Bedrock 的 Message API,调用 Claude 3 家族中的 Sonnet 模型对图像…...
Golang基础 Label标签与goto跳转
使用方法 Label 和goto是必须的 Label可以声明再函数体的任何地方 Label的作用范围是在函数体中 Label在嵌套函数(闭包)是不可用的. 不管是在闭包里调用闭包外的Label, 还是在闭包外调用闭包里的Label 变量的声明必须在goto之前 示例 package mainimport "fmt"…...
二进制王国(蓝桥杯备赛)【sort/cmp的灵活应用】
二进制王国 题目链接 https://www.lanqiao.cn/problems/17035/learning/?contest_id177 题目描述 思路 这里就要灵活理解字典序排列,虽然string内置可以直接比较字符串字典序,但是在拼接时比较特殊,比如 11的字典序小于110,但…...
活用C语言之宏定义应用大全
零、C语言宏定义知多少 C语言的编程过程中经常会用到宏定义,然而如果你只是使用宏定义做一些常量的定义,那么你不是OUT了就是C语言小白。 那么我们在编程过程中,宏定义都有哪些作用呢? 常量定义 可以作为功能代码的开关 防止头文件被重复…...
【源码】I.MX6ULL移植OpenCV
编译完成的源码: git clone https://gitee.com/wangyoujie11/atkboard_-linux_-driver.git 1.下载源码放在自己的opecv源码目录下 2.QTOpenCV工程代码放置的位置 3.更改.pro工程文件的opencv地址 4.使用命令行编译 前提是自己环境中已经配置好arm-qt的交叉编译…...
pytorch深度学习——dataset(附数据集下载)
在学习深度学习的时候,我们需要考虑如何去处理数据去训练我们的模型,pytorch为我们提供了Dataset和DataLoader两个类来对数据进行处理,前者作用是提供了一种方式来获取数据及其label,后者的作用是为网络提供不同的数据形式。本文主…...
springboot+vue考试管理系统
基于springboot和vue的考试管理系统 001 springboot vue前后端分离项目 本文设计了一个基于Springbootvue的前后端分离的在线考试管理系统,采用M(model)V(view)C(controller)三层体系结构&…...
自动驾驶建图--道路边缘生成方案探讨
自动驾驶建图–道路边缘生成方案探讨 一、背景 对于自动驾驶来说,建图是必不可少的,目前主流厂商技术都在从HD到"无图"进行过渡筹备中,不过想要最终实现真正的"无图"还是有很长的一段路要走。 对于建图来说,…...
图片编辑器中实现文件上传的三种方式和二进制流及文件头校验文件类型
背景 最近在 vue-design-editor 开源项目中实现 psd 等多种文件格式上传解析成模板过程中, 发现搞定设计文件上传没有使用 input 实现文件上传, 所以我研究了一下相关技术, 总结了以下三种文件上传方法 input 文件选择window.showOpenFilePicker 和 window.showDirectoryPicke…...
深度学习,CRNN+CTC和Attention OCR你更青睐哪一种?
深度学习在OCR领域的应用已经取得了瞩目的成果,而选择合适的算法对于提升OCR的识别准确率至关重要。在众多算法中,CRNN和Attention OCR犹如两颗璀璨的明珠,备受瞩目。 CRNN,这位结合了卷积神经网络(CNN)和…...
飞桨AI应用@riscv OpenKylin
在riscv编译安装飞桨PaddlePaddle参见: 算能RISC-V通用云编译飞桨paddlepaddleopenKylin留档_在riscv下进行paddlelite源码编译-CSDN博客 安装好飞桨,就可以用飞桨进行推理了。刚开始计划用ONNX推理,但是在算能云没有装上,所以最…...
在MongoDB建模1对N关系的基本方法
“我在 SQL 和规范化数据库方面拥有丰富的经验,但我只是 MongoDB 的初学者。如何建立一对 N 关系模型?” 这是我从参加 MongoDB 分享日活动的用户那里得到的最常见问题之一。 我对这个问题没有简短的答案,因为方法不只有一种,还有…...
C++基础之运算符重载(十一)
首先为什么要对运算符进行重载?因为C内置的运算符只能作用于一些基本数据类型,而对类和结构体这种自定义数据类型是不管用的。所以这时我们需要对运算符进行重新定义满足一定的运算规则。 运算符重载的三种形式 1.以普通的函数进行重载 #include <…...
初始Java篇(JavaSE基础语法)(2)(逻辑控制)
个人主页(找往期文章包括但不限于本期文章中不懂的知识点):我要学编程(ಥ_ಥ)-CSDN博客 目录 逻辑控制 顺序结构 分支结构 if语句 switch 语句 循环结构 while 循环 for 循环 do while 循环 输入输出 输出到控制台 从键盘输入 …...
家用路由器和企业路由器的区别?
一、家用路由器 家用路由器路由器交换机 它只有一个WAN口和一个LAN口,WAN口接公网一个地址,LAN口接你电脑一个IP地址,完全符合路由器的设计,而因为家里如果用了,说明要接多个电脑,那么如果还需要对每个接口…...
Gin简介(Go web基础知识)
Gin简介 https://geektutu.com/post/quick-go-gin.html我是从这个网站上面摘录的,就是做个笔记,仅分享。膜拜极客兔兔大佬 Go特性: 快速:路由不使用反射,基于Radix树,内存占用少。 中间件:HT…...
HBase的Bulk Load流程
目录 1. 数据准备 2. 文件移动 3. 加载数据 4. Region处理 5. 元数据更新 6. 完成加载 7. 清理 8. 异常处理 LoadIncrementalHFiles(也称为Bulk Load)是HBase中一种将大量数据高效导入到HBase表的机制。以下是LoadIncrementalHFiles的主要流程步…...
vue中图片替换 遇到问题
问题: 在img标签里动态绑定路径:<img v-bind:src"imgSrc" /> data里这样写是错误的:imgSrc:xx/xx.png 这样渲染的路径会有问题,导致出不来图片 解决了 是这样的 data(){return(){imgSrc:require("../…...
Android 观察者模式
在Android中,观察者模式(Observer Pattern)是一种常用的设计模式,用于在对象之间建立一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。在Android开发中࿰…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
