当前位置: 首页 > news >正文

BufferQueue研究

我们在工作的过程中,肯定听过分析卡顿或者冻屏问题的时候,定位到APP卡在dequeueBuffer方法里面,或者也听身边的同事老说3Buffer等信息。所以3Buffer是什么鬼?

什么是BufferQueue?

搞Android,你一定知道Graphic Buffer和 Buffer Queue, 你的笔记中肯定也有下面这张Graphic Buffer的状态迁移图。

系统中有两类Buffer Queue,如下图所示:

  1. Layer背后的Buffer Queue

第一类,也是最为大家所熟知的,就是Layer背后的BufferQueue,用来连接App与SurfaceFlinger。App为Producer端,而 SurfaceFlinger 为 Consumer 端。

App 绘制时,先从 Buffer Queue 中 dequeue(调用 Producer 的 dequeueBuffer()函数)出来一块图形缓冲,绘制完成后,再把绘制好的图形缓冲 queue(调用 Producer 的 queueBuffer()函数)到 Buffer Queue 中,并通知 SurfaceFlinger来消费。SurfaceFlinger 收到通知后,从 Buffer Queue 中 acquire 一块绘制过的 Buffer,然后进行合成处理:要么进行 GPU合成,要么交给 HWC 去合成。

合成完成之后,这个块 Buffer 就恢复自由身,会被返回到 Buffer Queue 中(调用 Consumer 的 releaseBuffer()函数),以备下一次使用。

但是在Android S代码上面,谷歌对SurfaceFlinger的代码进行了重构,从个人理解是为了减少SF的负责,Android S开始强制App端创建BufferQueue,也就是强制Client端分配Buffer。

在Android S的代码中引入了一个BLASTBufferQueue.java(后面简称BBQ)这个类,ViewRootImpl.java在调用relayoutWindow函数的时候,会创建BBQ这个对象。

Surface getOrCreateBLASTSurface() {if (!mSurfaceControl.isValid()) {return null;}Surface ret = null;if (mBlastBufferQueue == null) {mBlastBufferQueue = new BLASTBufferQueue(mTag, mSurfaceControl,mSurfaceSize.x, mSurfaceSize.y,mWindowAttributes.format);// We only return the Surface the first time, as otherwise// it hasn't changed and there is no need to update.ret = mBlastBufferQueue.createSurface();} else {mBlastBufferQueue.update(mSurfaceControl,mSurfaceSize.x, mSurfaceSize.y,mWindowAttributes.format);}return ret;
}

在BBQ对象初初始化的时候,会调用nativeCreate方法,BBQ对象会在构造方法中传入SurfaceControl对象,而这样就会和SurfaceFlinger创建了一个连接通道。SurfaceControl.java封装了很多Client调用的binder接口,而服务端是SurfaceFlinger。

通过nativeCreate本地方法,通过JNI(android_graphics_BLASTBufferQueue.cpp)的nativeCreate方法,创建了native层的BBQ。

static jlong nativeCreate(JNIEnv* env, jclass clazz, jstring jName, jlong surfaceControl,jlong width, jlong height, jint format) {String8 str8;if (jName) {const jchar* str16 = env->GetStringCritical(jName, nullptr);if (str16) {str8 = String8(reinterpret_cast<const char16_t*>(str16), env->GetStringLength(jName));env->ReleaseStringCritical(jName, str16);str16 = nullptr;}}std::string name = str8.string();sp<BLASTBufferQueue> queue =new BLASTBufferQueue(name, reinterpret_cast<SurfaceControl*>(surfaceControl), width,height, format);queue->incStrong((void*)nativeCreate);return reinterpret_cast<jlong>(queue.get());
}
BLASTBufferQueue::BLASTBufferQueue(const std::string& name, const sp<SurfaceControl>& surface,int width, int height, int32_t format): mSurfaceControl(surface),mSize(width, height),mRequestedSize(mSize),mFormat(format),mNextTransaction(nullptr) {createBufferQueue(&mProducer, &mConsumer);// since the adapter is in the client process, set dequeue timeout// explicitly so that dequeueBuffer will blockmProducer->setDequeueTimeout(std::numeric_limits<int64_t>::max());// safe default, most producers are expected to override thismProducer->setMaxDequeuedBufferCount(2);mBufferItemConsumer = new BLASTBufferItemConsumer(mConsumer,GraphicBuffer::USAGE_HW_COMPOSER |GraphicBuffer::USAGE_HW_TEXTURE,1, false);static int32_t id = 0;mName = name + "#" + std::to_string(id);auto consumerName = mName + "(BLAST Consumer)" + std::to_string(id);mQueuedBufferTrace = "QueuedBuffer - " + mName + "BLAST#" + std::to_string(id);id++;mBufferItemConsumer->setName(String8(consumerName.c_str()));mBufferItemConsumer->setFrameAvailableListener(this);mBufferItemConsumer->setBufferFreedListener(this);mBufferItemConsumer->setDefaultBufferSize(mSize.width, mSize.height);mBufferItemConsumer->setDefaultBufferFormat(convertBufferFormat(format));mBufferItemConsumer->setBlastBufferQueue(this);ComposerService::getComposerService()->getMaxAcquiredBufferCount(&mMaxAcquiredBuffers);mBufferItemConsumer->setMaxAcquiredBufferCount(mMaxAcquiredBuffers);mTransformHint = mSurfaceControl->getTransformHint();mBufferItemConsumer->setTransformHint(mTransformHint);SurfaceComposerClient::Transaction().setFlags(surface, layer_state_t::eEnableBackpressure,layer_state_t::eEnableBackpressure).setApplyToken(mApplyToken).apply();mNumAcquired = 0;mNumFrameAvailable = 0;BQA_LOGV("BLASTBufferQueue created width=%d height=%d format=%d mTransformHint=%d", width,height, format, mTransformHint);
}

从上面的代码中,createBufferQueue创建了BufferQueue,同时也创建了Graphic Buffer的生产者和消费者。其中有个代码mProducer -> setMaxDequeuedBufferCount(2),这个就和3Buffer有关系了,我们先整理下Buffer的运转过程,如图所示:

  1. App的RenderThread 调用 Producer.dequeueBuffer()在BufferQueue中拿到一个空闲的Buffer。

  1. App的RenderThread调用Producer.queueBuffer将绘制好的 Buffer 入列。注意,此时入列的 Buffer 可能还未绘制完成,即 GPU 可能还在进行绘制工作。

  1. 最终调用到 Procuder 的 Bn 端,即 SurfaceFliner 进程里的某个 Binder 线程里。在 Bn 端,会通过调用SurfaceFlinger的SetTransactionState方法,把当前的带有Buffer信息的State保存到一个TransactionQueue队列中。

  1. 当带有Buffer信息的Layer信息保存到队列中, 这个动作称作“上帧”。所以我么可以在 systrace 上看到该Layer待消费的 Buffer 数目+1。

  1. 而 Buffer Queue 的消费者就是 SurfaceFlinger,所以在下一个 Vsync信号到来后,在 SurfaceFlinger 的 handleMessageInvalidate()函数中,调用 acquireBuffer()去取 Buffer,取走之后,BufferQueue 中待消费的 Buffer 便减少一个。

  1. 因为有上帧,所以要重新进行合成,SurfaceFlinger 调用onMessageRefresh()函数去做合成,一般是 HWC 合成,直接把 Buffer 交给 HWC。合成完成后,在 postComposition()里,会调用binder接口进行通讯。

  1. App端的binder收到消息后调用releaseBuffer()释放 Buffer,如 systrace 所示,这里释放的是上一帧的 Buffer。

上面图中7个步骤就是一个buffer详细的转运过程。

  1. DisplayDevice 背后的Buffer Queue

第二类Buffer Queue是GPU合成特有的,一般在游戏APP渲染过程中会遇到,这个Buffer Queue隐藏在DisplayDevice之后,是在SurfaceFlinger为每个接入系统的显示屏创建DisplayDevice实例时创建的。

执行在SurfaceFlinger::processDisplayAdded函数中。

void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,const DisplayDeviceState& state) {......sp<compositionengine::DisplaySurface> displaySurface;sp<IGraphicBufferProducer> producer;sp<IGraphicBufferProducer> bqProducer;sp<IGraphicBufferConsumer> bqConsumer;getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);......
}

这个函数是为DisplaySurface创建BufferQueue, createBufferQueue函数是指向BufferQueue::createBufferQueue,传入的第三个参数 consumerIsSurfaceFlinger 为false,表示BufferQueue的消费者不是SurfaceFlinger。

void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,const DisplayDeviceState& state) {......if (state.isVirtual()) {const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId());LOG_FATAL_IF(!displayId);auto surface = sp<VirtualDisplaySurface>::make(getHwComposer(), *displayId, state.surface,bqProducer, bqConsumer, state.displayName);displaySurface = surface;producer = std::move(surface);} else {ALOGE_IF(state.surface != nullptr,"adding a supported display, but rendering ""surface is provided (%p), ignoring it",state.surface.get());const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId());LOG_FATAL_IF(!displayId);displaySurface =sp<FramebufferSurface>::make(getHwComposer(), *displayId, bqConsumer,state.physical->activeMode->getSize(),ui::Size(maxGraphicsWidth, maxGraphicsHeight));producer = bqProducer;}......
}

除了虚拟盘,主屏或者外屏采用FrameBufferSurface,继承自ConsumerBase,把BufferQueueConsumer封装到FrameBufferSurface里面。

  1. Buffer共享

  1. Buffer分配

  1. Buffer同步:fence

后面三个点的内容还在整理中,等整理完毕,再同步到这章内容中。

相关文章:

BufferQueue研究

我们在工作的过程中&#xff0c;肯定听过分析卡顿或者冻屏问题的时候&#xff0c;定位到APP卡在dequeueBuffer方法里面&#xff0c;或者也听身边的同事老说3Buffer等信息。所以3Buffer是什么鬼&#xff1f;什么是BufferQueue?搞Android&#xff0c;你一定知道Graphic Buffer和…...

【计组笔记08】计算机组成与原理之IO设备系统(输入、输出设备、外存储器)

这篇文章,主要介绍计算机组成与原理之IO设备系统(输入、输出设备、外存储器)。 目录 一、IO设备系统 1.1、IO系统的演变 (1)早期阶段 (2)接口模块和DMA阶段...

使用Vue实现数据可视化大屏功能(一)

导语   现在在很多的工程项目中&#xff0c;都有有关于数据大屏相关的监控内容&#xff0c;这里我们就来看一下如何用Vue来搭建一个数据可视化大屏应用。 创建项目 使用WebStorm工具创建一个Vue的项目。如下图所示&#xff0c;配置好vue的脚手架工具和nodejs的运行环境&#…...

华为OD机试真题Python实现【整数对最小和】真题+解题思路+代码(20222023)

整数对最小和 题目 给定两个整数数组 array1 array2 数组元素按升序排列 假设从array1 array2中分别取出一个元素可构成一对元素 现在需要取出K个元素 并对取出的所有元素求和 计算和的最小值 注意: 两对元素如果对应于array1 array2中的两个下标均相同,则视为同一个元素 �…...

2023年绿色建筑国际会议(ICoGB 2023)

2023年绿色建筑国际会议&#xff08;ICoGB 2023&#xff09; 重要信息 会议网址&#xff1a;www.icogb.org 会议时间&#xff1a;2023年5月19-21日 召开地点&#xff1a;斯德哥尔摩 截稿时间&#xff1a;2023年4月1日 录用通知&#xff1a;投稿后2周内 收录检索&#xff…...

【力扣1653】使字符串平衡的最少删除次数

给你一个字符串 s &#xff0c;它仅包含字符 a 和 b​​​​ 。你可以删除 s 中任意数目的字符&#xff0c;使得 s 平衡 。当不存在下标对 (i,j) 满足 i < j &#xff0c;且 s[i] b 的同时 s[j] a &#xff0c;此时认为 s 是 平衡 的。请你返回使 s 平衡 的 最少 删除次数。…...

链表的中间结点与链表的倒数第k个结点(精美图示详解哦)

全文目录引言链表的中间结点题目描述与思路实现链表的倒数第k个结点题目描述与思路实现总结引言 在上一篇文章中&#xff0c;介绍了反转链表 我们利用了链表是逻辑连续的特点&#xff0c;逆置了链表的逻辑连接顺序&#xff0c;从而实现反转链表&#xff1a; 戳我查看反转链表详…...

防静电监控仪可以检测现场设备是否和实际大地接触

随着电子产品集成化度越来越高&#xff0c;对于电子产品装配来说&#xff0c;静电的危害严重影响到产品的质量、成品率和可靠性, 必须对用于电子产品装配的净化间进行系统防静电措施&#xff0c;将生产过程中的静电危害程度降至最低。近年来电子企业对ESD的危害的深入认识&…...

计算机网络第八版——第二章课后题答案(超详细)

第二章 该答案为博主在网络上整理&#xff0c;排版不易&#xff0c;希望大家多多点赞支持。后续将会持续更新&#xff08;可以给博主点个关注~ 第一章 答案 【2-01】物理层要解决哪些问题&#xff1f;物理层的主要特点是什么&#xff1f; 解答&#xff1a;物理层考虑的是怎…...

2023年3月全国DAMA-CDGA/CDGP数据管理认证火热报名中...

弘博创新是DAMA中国授权的数据治理人才培养基地&#xff0c;贴合市场需求定制教学体系&#xff0c;采用行业资深名师授课&#xff0c;理论与实践案例相结合&#xff0c;快速全面提升个人/企业数据治理专业知识与实践经验&#xff0c;通过考试还能获得数据专业领域证书。 DAMA认…...

查询与进程调度(CFS)相关信息

目录 查询与进程相关的调度信息 查看CFS调度信息 CPU相关的信息 CFS就绪队列的总运行时间 实时队列与deadline调度的相关信息 所有进程相关的信息 查询与进程相关的调度信息 进程的nice值&#xff0c;优先级&#xff0c;调度策略,vruntime等信息。在proc目录下&#xf…...

07对MVC的理解

MVC是一种设计模式&#xff0c;用于将应用程序的不同方面分离开来&#xff0c;以便更容易地管理和维护应用程序。MVC代表模型-视图-控制器&#xff0c;它将应用程序分为三个主要组件&#xff1a;模型&#xff08;Model&#xff09;&#xff1a;负责管理应用程序的数据和业务逻辑…...

WebSocket与Socket、TCP、HTTP的关系

目录&#xff1a;1、名词解析&#xff1b;2、WebSocket简介与原理&#xff1b;3、WebSocket和Http的关系和异同点&#xff1b;4、WebSocket与Socket的区别&#xff1b;5、Socket和TCP/IP&#xff1b;6、一个应用程序的通信链路&#xff1b;1、基础名词解析&#xff1a;&#xf…...

音频基础知识简述 esp-sr 上手指南

此篇博客先对音频基础知识进行简要叙述&#xff0c;然后帮助读者入门 esp-sr SDK。 1 音频的基本概念 1.1 声音的本质 声音的本质是波在介质中的传播现象&#xff0c;声波的本质是一种波&#xff0c;是一种物理量。 两者不一样&#xff0c;声音是一种抽象的&#xff0c;是声…...

Flex弹性布局一文通【最全Flex教学】

文章目录一.Flex布局1.1 传统布局和flex布局1.1.1 传统布局1.1.2 flex弹性布局1.2 flex初步体验1.3 布局原理二.常见Flex属性2.1 常见父项属性2.2 flex-direction主轴的方向2.3 justify-content设置主轴上的子元素排列方式2.4 设置子元素是否flex-wrap换行2.5 align-itmes设置侧…...

Navicat使用教程

Navicat&#xff1a;一个可以对别人的数据库进行操作的软件&#xff08;需要与如mysql等数据库配套使用&#xff09; 1. 下载mysql MySQL :: Download MySQL Community Server (Archived Versions) 下载上面那个版本 下载下来是个压缩包&#xff0c;解压 2.配置mysql (1)在…...

35岁测试人该何去何从?10年工作经验的我,只不过是一年的工作经验用了10年......

如果到了这个年龄&#xff0c;还是初级测试&#xff0c;或者只会一些简单的自动化测试&#xff0c;那么真的是不好干了。 35的年龄&#xff0c;企业对员工是有另一层面的考量。 简单来说&#xff0c;就是年龄上去了&#xff0c;能力也要上去&#xff0c;要么是技术专家&#…...

SpringBoot 项目中集成 Prometheus 和 Grafana

项目上线后&#xff0c;除了能保障正常运行以外&#xff0c;也需要服务运行的各个指标进行监控&#xff0c;例如 服务器CPU、内存使用占比&#xff0c;Full GC 执行时间等&#xff0c;针对一些指标出现异常&#xff0c;可以加入一些报警机制能及时反馈给开发运维。这样&#xf…...

红队APT——反朔源流量加密CSMSF证书指纹C2项目CDN域前置

目录 0x01 背景交代 0x02 常见红蓝对抗中红队面临问题 0x03 蓝队发现处置情况...

Linux环境下实现并详细分析c/cpp线程池(附源码)

一、线程池原理 如果并发的线程数量很多&#xff0c;并且每个线程都是执行一个时间很短的任务就结束了&#xff0c;这样频繁创建线程就会大大降低系统的效率&#xff0c;因为频繁创建线程和销毁线程需要时间。 线程池是一种多线程处理形式&#xff0c;处理过程中将任务添加到…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

机器学习复习3--模型评估

误差与过拟合 我们将学习器对样本的实际预测结果与样本的真实值之间的差异称为&#xff1a;误差&#xff08;error&#xff09;。 误差定义&#xff1a; ①在训练集上的误差称为训练误差&#xff08;training error&#xff09;或经验误差&#xff08;empirical error&#x…...

【见合八方平面波导外腔激光器专题系列】用于干涉光纤传感的低噪声平面波导外腔激光器2

----翻译自Mazin Alalus等人的文章 摘要 1550 nm DWDM 平面波导外腔激光器具有低相位/频率噪声、窄线宽和低 RIN 等特点。该腔体包括一个半导体增益芯片和一个带布拉格光栅的平面光波电路波导&#xff0c;采用 14 引脚蝶形封装。这种平面波导外腔激光器设计用于在振动和恶劣的…...