Spark spark-submit 提交应用程序
Spark spark-submit 提交应用程序
Spark支持三种集群管理方式
- Standalone—Spark自带的一种集群管理方式,易于构建集群。
- Apache Mesos—通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。
- Hadoop YARN—Hadoop2中的资源管理器。
注意:
1、在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高。
2、Spark可以在应用间(通过集群管理器)和应用中(如果一个SparkContext中有多项计算任务)进行资源调度。
Running Spark on YARN
cluster mode
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
lib/spark-examples*.jar \
10
client mode
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
lib/spark-examples*.jar \
10
spark-submit 详细参数说明
| 参数名 | 参数说明 |
|---|---|
| —master | master 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local。具体指可参考下面关于Master_URL的列表 |
| —deploy-mode | 在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client |
| —class | 应用程序的主类,仅针对 java 或 scala 应用 |
| —name | 应用程序的名称 |
| —jars | 用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下 |
| —packages | 包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标 |
| —exclude-packages | 为了避免冲突 而指定不包含的 package |
| —repositories | 远程 repository |
| —conf PROP=VALUE | 指定 spark 配置属性的值, 例如 -conf spark.executor.extraJavaOptions=”-XX:MaxPermSize=256m” |
| —properties-file | 加载的配置文件,默认为 conf/spark-defaults.conf |
| —driver-memory | Driver内存,默认 1G |
| —driver-java-options | 传给 driver 的额外的 Java 选项 |
| —driver-library-path | 传给 driver 的额外的库路径 |
| —driver-class-path | 传给 driver 的额外的类路径 |
| —driver-cores | Driver 的核数,默认是1。在 yarn 或者 standalone 下使用 |
| —executor-memory | 每个 executor 的内存,默认是1G |
| —total-executor-cores | 所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用 |
| —num-executors | 启动的 executor 数量。默认为2。在 yarn 下使用 |
| —executor-core | 每个 executor 的核数。在yarn或者standalone下使用 |
Master_URL的值
| Master URL | 含义 |
|---|---|
| local | 使用1个worker线程在本地运行Spark应用程序 |
| local[K] | 使用K个worker线程在本地运行Spark应用程序 |
| local | 使用所有剩余worker线程在本地运行Spark应用程序 |
| spark://HOST:PORT | 连接到Spark Standalone集群,以便在该集群上运行Spark应用程序 |
| mesos://HOST:PORT | 连接到Mesos集群,以便在该集群上运行Spark应用程序 |
| yarn-client | 以client方式连接到YARN集群,集群的定位由环境变量HADOOP_CONF_DIR定义,该方式driver在client运行。 |
| yarn-cluster | 以cluster方式连接到YARN集群,集群的定位由环境变量HADOOP_CONF_DIR定义,该方式driver也在集群中运行。 |
区分client,cluster,本地模式
下图是典型的client模式,spark的drive在任务提交的本机上。

下图是cluster模式,spark drive在yarn上。

三种模式的比较
| Yarn Cluster | Yarn Client | Spark Standalone | |
|---|---|---|---|
| Driver在哪里运行 | Application Master | Client | Client |
| 谁请求资源 | Application Master | Application Master | Client |
| 谁启动executor进程 | Yarn NodeManager | Yarn NodeManager | Spark Slave |
| 驻内存进程 | 1.Yarn ResourceManager 2.NodeManager | 1.Yarn ResourceManager 2.NodeManager | 1.Spark Master 2.Spark Worker |
| 是否支持Spark Shell | No | Yes | Yes |
spark-submit提交应用程序示例
# Run application locally on 8 cores(本地模式8核)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master local[8] \/path/to/examples.jar \100
# Run on a Spark standalone cluster in client deploy mode(standalone client模式)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master spark://207.184.161.138:7077 \--executor-memory 20G \--total-executor-cores 100 \/path/to/examples.jar \1000
# Run on a Spark standalone cluster in cluster deploy mode with supervise(standalone cluster模式使用supervise)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master spark://207.184.161.138:7077 \--deploy-mode cluster \--supervise \--executor-memory 20G \--total-executor-cores 100 \/path/to/examples.jar \1000
# Run on a YARN cluster(YARN cluster模式)
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master yarn \--deploy-mode cluster \ # can be client for client mode--executor-memory 20G \--num-executors 50 \/path/to/examples.jar \1000
# Run on a Mesos cluster in cluster deploy mode with supervise(Mesos cluster模式使用supervise)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master mesos://207.184.161.138:7077 \--deploy-mode cluster \--supervise \--executor-memory 20G \--total-executor-cores 100 \http://path/to/examples.jar \1000
# Run a Python application on a Spark standalone cluster(standalone cluster模式提交python application)
./bin/spark-submit \--master spark://207.184.161.138:7077 \examples/src/main/python/pi.py \1000
一个例子
spark-submit \
--master yarn \
--queue root.sparkstreaming \
--deploy-mode cluster \
--supervise \
--name spark-job \
--num-executors 20 \
--executor-cores 2 \
--executor-memory 4g \
--conf spark.dynamicAllocation.maxExecutors=9 \
--files commons.xml \
--class com.***.realtime.helper.HelperHandle \
BSS-ONSS-Spark-Realtime-1.0-SNAPSHOT.jar 500
相关文章:
Spark spark-submit 提交应用程序
Spark spark-submit 提交应用程序 Spark支持三种集群管理方式 Standalone—Spark自带的一种集群管理方式,易于构建集群。Apache Mesos—通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。Hadoop YARN—Hadoop2中的资源管理器。 注意&…...
IOS面试题编程机制 51-55
51. 在iPhone应用中如何保存数据?有以下几种保存机制: 1).通过web服务,保存在服务器上 2).通过NSCoder固化机制,将对象保存在文件中 3).通过SQlite或CoreData保存在文件数据库中52. 阐述Block 的理解?并写出一个使用Block执行UIVew动画?Block是可以获取其他函数局部变量的…...
话题——AI大模型学习
AI大模型学习 在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作…...
MySQL基础复习
目录 一、简单的命令 二、SQL语句分类 三、简单查询 四、条件查询 五、排序 一、简单的命令 net start 服务名称 net stop 服务名称 mysql -uroot -p123456 显示密码形式 mysql -uroot -p 隐藏密码形式 exit 退出 show databases; 查看MySQL中的数据库有哪些 use test…...
Zookeeper(八)序列化与协议
目录 一 序列化与反序列化1.1 Jute序列化工具1.1 Recor接口1.2 OutputArchive和InputArchive 二 通信协议2.1 请求部分2.1.1 请求头2.2.2 请求体2.1.3 案例分析 2.2 响应部分2.2.1 响应头2.2.2 响应内容2.2.3 案例分析 官网:Apache ZooKeeper 一 序列化与反序列化 …...
人工智能之Tensorflow变量作用域
在TensoFlow中有两个作用域(Scope),一个时name_scope ,另一个是variable_scope。variable_scope主要给variable_name加前缀,也可以给op_name加前缀;name_scope给op_name加前缀。 variable_scope 通过所给的名字创建或…...
ElasticSearch插件安装及配置
Docker安装ElasticSearch docker compose 安装直接看步骤三:新建索引 1、安装elasticsearch (1)下载elasticsearch和kibana docker pull elasticsearch:7.9.1 docker pull kibana:7.9.1(2)配置 mkdir -p /mydata/…...
vue+Echarts实现多设备状态甘特图
目录 1.效果图 2.代码 3.注意事项 Apache ECharts ECharts官网,可在“快速上手”处查看详细安装方法 1.效果图 可鼠标滚轮图表和拉动下方蓝色的条条调节时间细节哦 (注:最后一个设备没有数据,所以不显示任何矩形)…...
STM32使用滴答定时器实现delayms
在STM32上使用SysTick实现jiffies(时间戳)并且实现delay_ms 代码实现: volatile uint32_t jiffies 0; // 用于记录系统运行的jiffies数 void SysTick_Handler(void) {/* 每次SysTick中断,jiffies增加 */jiffies; }uint32_t tick…...
k8s的volumn解析
背景 k8s中有一套自己的存储逻辑,它和docker中的volumn类似,本文就来看一下k8s的volunm的存储设计 k8s的volumn 1.EmptyDir类型的volumn 这种类型的volumn是Pod内的容器共享的,volumn的生命周期和Pod的生命周期是一致的,不过大…...
Golang获取音视频时长信息
文章目录 一、工具简介二、使用golang获取时间长 一、工具简介 这些工具都是与多媒体处理和流媒体相关的开源工具,它们都属于 FFmpeg 多媒体框架。 FFmpeg 是一个用于处理多媒体内容(音频、视频、图像等)的命令行工具。它可以执行各种各样…...
LeetCode 面试经典150题 14.最长公共前缀
题目: 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 ""。 思路: 代码: class Solution {public String longestCommonPrefix(String[] strs) {if (strs.length 0) {return &…...
自注意力机制的理解
一、自注意力要解决什么问题 循环神经网络由于信息传递的容量以及梯度消失问题,只能建立短距离依赖关系。为了建立长距离的依赖关系,可以增加网络的层数或者使用全连接网络。但是全连接网络无法处理变长的输入序列,另外,不同的输…...
win10-误删winsock恢复方法
文件链接放在最前面 链接:https://pan.baidu.com/s/1i9X0HJJOfo63fbtOETc1Xw?pwdlfqx 提取码:lfqx 误删后应该还是可以正常连接网络的,但是重启过后直接以太网和wifi都是无法使用的。下图是我后面网络正常补充的图片 误删后是只有飞行模式…...
c#矩阵求逆
目录 一、矩阵求逆的数学方法 1、伴随矩阵法 2、初等变换法 3、分块矩阵法 4、定义法 二、矩阵求逆C#代码 1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵 (1)伴随矩阵数学方法 (2)代码 (3)计算 2、对…...
array go 语言的数组 /切片
内存地址通过& package mainimport "fmt"func main() {var arr [2][3]int16fmt.Println(arr)fmt.Printf("arr的地址是: %p \n", &arr)fmt.Printf("arr[0]的地址是 %p \n", &arr[0])fmt.Printf("arr[0][0]的地址是 %p \n"…...
【Stable Diffusion】专栏介绍和文章索引(持续更新中)
目录 1 背景2 思考3 文章索引(持续更新中)3.1 入门3.2 初级3.3 中级3.3 高级 1 背景 最近开始学习AIGC,对Stable Diffusion比较感兴趣,所以新建了这个专栏,来记录自己在使用和学习Stable Diffusion的一些方法、资料以…...
RPC 快速入门
一、What 1)小故事 张三和李四都在同一个家公司负责商品交易的模块,两个人平时开发甚是紧密。 🙋🏻♂️ 张三:“李四,我这边一个商品下单了,但是付款数额不对,你帮我查下支付有没…...
使用Docker搭建Syslog-ng
Syslog-ng是一个可靠、多功能的日志管理系统,用于收集日志并将其转发到指定的日志分析工具。 使用Docker CLI方式搭建 步骤 1: 拉取Syslog-ng镜像 首先,需要从Docker Hub拉取Syslog-ng的官方镜像。 docker pull balabit/syslog-ng:latest步骤 2: 启动…...
使能 Linux 内核自带的 FlexCAN 驱动
一. 简介 前面一篇文章学习了 ALPHA开发板修改CAN的设备树节点信息,并加载测试过设备树文件,文件如下: ALPHA开发板修改CAN的设备树节点信息-CSDN博客 本文是学习使能 IMX6ULL的 CAN驱动,也就是通过内核配置来实现。 二. 使能…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
