当前位置: 首页 > news >正文

c#矩阵求逆

目录

一、矩阵求逆的数学方法

1、伴随矩阵法

2、初等变换法

3、分块矩阵法

4、定义法

二、矩阵求逆C#代码

1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵

(1)伴随矩阵数学方法

(2)代码

(3)计算

2、对任意阶数矩阵求逆

(1)计算方法

(2)代码

(3)计算

(4)计算结果

三、工程下载连接


一、矩阵求逆的数学方法

1、伴随矩阵法

2、初等变换法

3、分块矩阵法

4、定义法

二、矩阵求逆C#代码

1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵

(1)伴随矩阵数学方法

(2)代码

        /// <summary>/// 计算3*3矩阵的逆矩阵/// </summary>/// <param name="input">输入的3*3矩阵</param>/// <returns>计算得到的3*3逆矩阵</returns>public static double[,] inv3(double[,] input){double[,] output = new double[3, 3];//求出伴随矩阵output[0, 0] = input[2, 2] * input[1, 1] - input[2, 1] * input[1, 2];output[0, 1] = input[2, 1] * input[0, 2] - input[0, 1] * input[2, 2];output[0, 2] = input[0, 1] * input[1, 2] - input[0, 2] * input[1, 1];output[1, 0] = input[1, 2] * input[2, 0] - input[2, 2] * input[1, 0];output[1, 1] = input[2, 2] * input[0, 0] - input[0, 2] * input[2, 0];output[1, 2] = input[0, 2] * input[1, 0] - input[0, 0] * input[1, 2];output[2, 0] = input[1, 0] * input[2, 1] - input[2, 0] * input[1, 1];output[2, 1] = input[2, 0] * input[0, 1] - input[0, 0] * input[2, 1];output[2, 2] = input[0, 0] * input[1, 1] - input[1, 0] * input[0, 1];//求出行列式的值double Avalue = input[0, 0] * input[1, 1] * input[2, 2]+ input[0, 1] * input[1, 2] * input[2, 0]+ input[0, 2] * input[1, 0] * input[2, 1]- input[0, 2] * input[1, 1] * input[2, 0]- input[0, 1] * input[1, 0] * input[2, 2]- input[0, 0] * input[1, 2] * input[2, 1];//求出 逆矩阵 for (int i = 0; i < 3; i++){for (int j = 0; j < 3; j++){output[i, j] = output[i, j] / Avalue;}}return output;}

(3)计算

计算代码

            计算3*3矩阵的逆矩阵double[,] input = new double[3, 3] {{ 0,    1,      3 }, { 1,    -1,     0 },{-1,    2,      1}};double[,] out1 = inv3(input);               //方法1——只能求3*3

程序计算结果

对应数学题目

2、对任意阶数矩阵求逆

(1)计算方法

Step1

1)利用初等行变换,那么要将单位矩阵E和n阶矩阵B合并(规定为EandB_normal[ n, 2 * n])

Step2

2)将EandB_normal[ n, 2 * n]转为右半部分为上三角的矩阵

>>>这一步转换比较复杂一点,具体实现就是:

>>>第一层循环,循环变量 j 从第n列开始到第2 * n - 1列结束,目的就是将该列值都转为1,方便后边变为上三角矩阵(需要注意的是,对于第n列,应该考虑把每个值都变为1;但是到第n + 1列时,就不考虑第一个值了;第n + 2列时,不考虑第一个和第二个值;类推);

>>>第二层循环,循环变量 i 从第j - n行开始到第n - 1行结束,目的是对每一行都进行除以EandB_normal[ i, j]值的运算,这样EandB_normal[ i, j]的值就变为了1(需要注意的是,如果EandB_normal[ i, j]的值为0的话,我们考虑将该行与最后一行调换,同时循环变量 i 到第n - 2行结束;如果调换之后,EandB_normal[ i, j]的值仍然为0,那么再将该行与此时的最后一行调换,类推;但是如果一直调换,直到发现始终为0,就说明矩阵B不满秩,退出计算;如果EandB_normal[ i, j]值为负数,该行同时变号);

>>>第三层循环,循环变量 k 从第0列开始到第2 * n - 1列结束,目的是将上一步中循环到的行中的每一个值都除以EandB_normal[ i, j]的值;

>>>循环全部完成之后,矩阵EandB_normal[ n, 2 * n]就变成了右半部分为上三角的矩阵。

Step3

3)接上一步,将该矩阵转为右半部分为单位矩阵的矩阵,此时即为矩阵B的逆矩阵与单位矩阵的合并(规定为B_inverse_andE[ n, 2 * n])

>>>这一步中的循环变量是递减的,具体实现就是:

>>>第一层循环,循环变量 j 从第2 * n - 1列开始到第n列结束,目的是将该列值只保留一个1,其余变为0;

>>>第二层循环,循环变量 i 从第 j - n行开始到第0行结束;

>>>第三层循环,循环变量 k 从第0列开始到第2 * n - 1列结束;拿 j = 2 * n - 1, i = n - 1举例,此时,我们希望第n - 2行的值都加上该行最后一个值的相反数与第n - 1行乘积的对应值,第n - 3行的值都加上该行最后一个值得相反数与第n - 1行乘积的对应值,类推;(需要注意的是,j = 2 * n - 2时,i从第n - 2行开始循环,j = 2 * n - 3时,i从第n - 2行开始循环,类推);

>>>当循环全部完成之后,B_inverse_andE[ n, 2 * n]的右半部分就变为了单位矩阵,左半部分为矩阵B的逆矩阵。

Step4

4)接上一步,将B的逆矩阵取出来(规定为B_inverse[n, n])

(2)代码

/// <summary>/// 任意矩阵求逆。(矩阵是2*2、3*3、4*4、5*5等类型)/// </summary>/// <param name="matrixB">输入的初始矩阵</param>/// <param name="orderNum">矩阵行和列的数</param>/// <returns>计算出的逆矩阵</returns>public static double[,] MatrixInverse(double[,] matrixB, int orderNum){//判断是否满秩bool IsFullRank = true;//n为阶级int n = orderNum;//####赋值####//矩阵B//矩阵B的逆矩阵//单位矩阵E和矩阵B组成的矩阵double[,] B_normal = matrixB;double[,] B_inverse = new double[n, n];double[,] EandB_normal = new double[n, 2 * n];for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){if (i == j)EandB_normal[i, j] = 1;elseEandB_normal[i, j] = 0;}for (int k = n; k < 2 * n; k++){EandB_normal[i, k] = B_normal[i, k - n];}}//####计算####//中间变量数组,用于临时盛装值double[] rowHaveZero = new double[2 * n];//EB矩阵右边的n*n变为上三角矩阵for (int j = n; j < 2 * n; j++){int firstRowN = j - n;int lastRowN = n;int colCount = 2 * n;//把EB中索引为j的列的值化为1for (int i = firstRowN; i < lastRowN; i++){//如果EBijNum值为0,就把0所在的行与此刻最后一行调换位置//并且循环变量i的终止值减去1,直到EBijNum值不为0//最多调换到0所在的行的下一行double EBijNum = EandB_normal[i, j];while (EBijNum == 0 && lastRowN > i + 1){for (int k = 0; k < colCount; k++){rowHaveZero[k] = EandB_normal[i, k];EandB_normal[i, k] = EandB_normal[lastRowN - 1, k];EandB_normal[lastRowN - 1, k] = rowHaveZero[k];}lastRowN -= 1;EBijNum = EandB_normal[i, j];}//如果while循环是由第二个判断跳出//即EBijNum始终为0if (EBijNum == 0){//循环变量i的终止值再减去1,然后跳出循环lastRowN -= 1;break;}//如果为负数,该行变号if (EBijNum < 0){for (int k = 0; k < colCount; k++){EandB_normal[i, k] = (-1) * EandB_normal[i, k];}EBijNum = EandB_normal[i, j];}//将该值变为1,则其余值都除以EBijNumfor (int k = 0; k < colCount; k++){EandB_normal[i, k] = EandB_normal[i, k] / EBijNum;}}//自n列起,每列只保留一个1,呈阶梯状int secondRowN = firstRowN + 1;for (int i = secondRowN; i < lastRowN; i++){for (int k = 0; k < colCount; k++){EandB_normal[i, k] = EandB_normal[i, k]- EandB_normal[firstRowN, k];}}if (lastRowN == firstRowN){//矩阵不满秩IsFullRank = false;break;}}//不满秩,结束运算if (!IsFullRank){double[,] error = new double[n, n];for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){error[i, j] = 0;}}//返还值均为0的矩阵return error;}//将上三角矩阵变为单位矩阵for (int j = 2 * n - 1; j > n; j--){//firstRowN为参考行//secondRowN为运算行int firstRowN = j - n;int secondRowN = firstRowN - 1;int colCount = j + 1;//从最后一列起,每列只保留一个1,其余减为0for (int i = secondRowN; i > -1; i--){double EBijNum = EandB_normal[i, j];for (int k = 0; k < colCount; k++){EandB_normal[i, k] = EandB_normal[i, k]- EandB_normal[firstRowN, k] * EBijNum;}}}//####提取逆矩阵####for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){B_inverse[i, j] = EandB_normal[i, j];}}return B_inverse;}

(3)计算

private void button1_Click(object sender, EventArgs e){计算3*3矩阵的逆矩阵double[,] input = new double[3, 3] {{ 0,    1,      3 }, { 1,    -1,     0 },{-1,    2,      1}};double[,] out1 = inv3(input);               //方法1——只能求3*3double[,] out2 = MatrixInverse(input, 3);   //方法2计算2*2矩阵的逆矩阵double[,] input2 = new double[2, 2] {{ 1, 2 }, { 3, 4 }};double[,] out3 = MatrixInverse(input2, 2); //计算4*4矩阵的逆矩阵double[,] input3 = new double[4, 4] {{ 2, 1,-1,2 }, { 1, 1,1,-1 },{0,0,2,5},{0,0,1,3}};double[,] out4 = MatrixInverse(input3, 4); }

(4)计算结果

以4*4矩阵说明

三、工程下载连接

https://download.csdn.net/download/panjinliang066333/89024543

相关文章:

c#矩阵求逆

目录 一、矩阵求逆的数学方法 1、伴随矩阵法 2、初等变换法 3、分块矩阵法 4、定义法 二、矩阵求逆C#代码 1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵 &#xff08;1&#xff09;伴随矩阵数学方法 &#xff08;2&#xff09;代码 &#xff08;3&#xff09;计算 2、对…...

array go 语言的数组 /切片

内存地址通过& package mainimport "fmt"func main() {var arr [2][3]int16fmt.Println(arr)fmt.Printf("arr的地址是: %p \n", &arr)fmt.Printf("arr[0]的地址是 %p \n", &arr[0])fmt.Printf("arr[0][0]的地址是 %p \n"…...

【Stable Diffusion】专栏介绍和文章索引(持续更新中)

目录 1 背景2 思考3 文章索引&#xff08;持续更新中&#xff09;3.1 入门3.2 初级3.3 中级3.3 高级 1 背景 最近开始学习AIGC&#xff0c;对Stable Diffusion比较感兴趣&#xff0c;所以新建了这个专栏&#xff0c;来记录自己在使用和学习Stable Diffusion的一些方法、资料以…...

RPC 快速入门

一、What 1&#xff09;小故事 张三和李四都在同一个家公司负责商品交易的模块&#xff0c;两个人平时开发甚是紧密。 &#x1f64b;&#x1f3fb;‍♂️ 张三&#xff1a;“李四&#xff0c;我这边一个商品下单了&#xff0c;但是付款数额不对&#xff0c;你帮我查下支付有没…...

使用Docker搭建Syslog-ng

Syslog-ng是一个可靠、多功能的日志管理系统&#xff0c;用于收集日志并将其转发到指定的日志分析工具。 使用Docker CLI方式搭建 步骤 1: 拉取Syslog-ng镜像 首先&#xff0c;需要从Docker Hub拉取Syslog-ng的官方镜像。 docker pull balabit/syslog-ng:latest步骤 2: 启动…...

使能 Linux 内核自带的 FlexCAN 驱动

一. 简介 前面一篇文章学习了 ALPHA开发板修改CAN的设备树节点信息&#xff0c;并加载测试过设备树文件&#xff0c;文件如下&#xff1a; ALPHA开发板修改CAN的设备树节点信息-CSDN博客 本文是学习使能 IMX6ULL的 CAN驱动&#xff0c;也就是通过内核配置来实现。 二. 使能…...

通过dbeaver链接dm8数据库

一、环境说明 windows 11 vmware 17 ubuntu 22 tt:~$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.3 LTS Release: 22.04 Codename: jammytt:~$ docker info Client:Version: 24.0.5Context: d…...

Stable diffusion(四)

训练自己的Lora 【DataSet】【Lora trainer】【SD Lora trainer】 前置的知识 batch size&#xff1a;模型一次性处理几张图片。一次性多处理图片&#xff0c;模型能够综合捕捉多张图片的特征&#xff0c;最终的成品效果可能会好。但是处理多个batch size也意味着更大的显存…...

oracle 19c RAC补丁升级

1.停止集群件备份家目录 ----两节点分别操作 cd /u01/app/19.3.0/grid/bin/ crsctl stop crstar -zcvf /u01/app.tar.gz /u01/app/u01/app/19.0.0/grid/bin/crsctl start crs2.两节点 GI、DB OPatch 替换&#xff08;都得执行&#xff09; ----# 表示 root 用户&#xff0c;$…...

计算机视觉研究方向

计算机视觉是一个广泛且快速发展的领域&#xff0c;涵盖了多种研究方向和技术。主要的研究方向包括图像处理、目标检测与识别、图像生成、三维视觉、行为识别、深度学习与计算机视觉、多媒体分析、视频理解、风格化、全向视觉传感器等。这些研究方向和技术不断进步&#xff0c;…...

数据分析-Pandas分类数据的比较如何避坑

数据分析-Pandas分类数据的比较如何避坑 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表…...

P - Beat

题目分析 1.看数据范围&#xff0c;大概知道dfs能做 2.自0问题开始查找&#xff0c;确保之后每次查找到的问题的困难度均大于上一次 3.遍历所有情况再记录cnt即可 代码 #include <iostream> #include <algorithm> #include <cstdio> #include <cstring&…...

机器学习——GBDT算法

机器学习——GBDT算法 在机器学习领域&#xff0c;梯度提升决策树&#xff08;Gradient Boosting Decision Trees&#xff0c;简称GBDT&#xff09;是一种十分强大且常用的集成学习算法。它通过迭代地训练决策树来不断提升模型性能&#xff0c;是一种基于弱学习器的提升算法。…...

阿里二面:谈谈ThreadLocal的内存泄漏问题?问麻了。。。。

引言 ThreadLocal在Java多线程编程中扮演着重要的角色&#xff0c;它提供了一种线程局部存储机制&#xff0c;允许每个线程拥有独立的变量副本&#xff0c;从而有效地避免了线程间的数据共享冲突。ThreadLocal的主要用途在于&#xff0c;当需要为每个线程维护一个独立的上下文…...

IOS面试题编程机制 46-50

46. 阐述 Method Swizzle(黑魔法),什么情况下会使用?1). 在没有一个类的实现源码的情况下,想改变其中一个方法的实现,除了继承它重写、和借助类别重名方法暴力抢先之外,还有更加灵活的方法 Method Swizzle。 2). Method Swizzle 指的是改变一个已存在的选择器对应的实现…...

web表单标签与练习(3.18)

一、表单域 表单域是一个包含表单元素的区域。 在HTML标签中&#xff0c;< form >标签用于定义表单域&#xff0c;以实现用户信息和传递。 < form >会把它范围内的表单元素信息提交给服务器。 表单属性 action url地址 用于指定接收并处理表单数据的服务器程序的…...

【协议-HTTP】

HTTP协议 HTTP协议(超文本传输协议HyperText Transfer Protocol)&#xff0c;它是基于TCP协议的应用层传输协议。http协议定义web客户端如何才能够web服务器请求web页面&#xff0c;以及服务器如何把web页面传送给客户端。 HTTP 是一种无状态 (stateless) 协议, HTTP协议本身…...

VUE3v-text、v-html、:style的理解

在Vue 3中&#xff0c;v-text、v-html和:style是三个常用的指令&#xff0c;它们各自具有不同的功能和用途。 v-text&#xff1a; v-text用于操作元素中的纯文本内容。它接受一个表达式&#xff0c;并将该表达式的值设置为元素的文本内容。如果元素原本有文本内容&#xff0c…...

Dataset之UCI_autos_cars:UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略

Dataset之UCI_autos_cars&#xff1a;UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略 目录 UCI_autos_imports-85的简介 UCI_autos_imports-85的安装 UCI_autos_imports-85的案例应用 1、训练一个简单的线性回归模型来预测汽车的价格 UCI_autos_i…...

结构体类型详细讲解(附带枚举,联合)

前言&#xff1a; 如果你还对结构体不是很了解&#xff0c;那么本篇文章将会从 为什么存在结构体&#xff0c;结构体的优点&#xff0c;结构体的定义&#xff0c;结构体的使用与结构体的大小依次介绍&#xff0c;同样会附带枚举与联合体 目录 为什么存在结构体&#xff1a; 结构…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...