当前位置: 首页 > news >正文

机器学习——GBDT算法

机器学习——GBDT算法

在机器学习领域,梯度提升决策树(Gradient Boosting Decision Trees,简称GBDT)是一种十分强大且常用的集成学习算法。它通过迭代地训练决策树来不断提升模型性能,是一种基于弱学习器的提升算法。本文将详细介绍梯度提升树算法的原理,并与随机森林进行对比,最后给出Python实现的示例代码和总结。

1. 提升树模型

提升树模型是一种基于决策树的集成学习方法,它通过组合多棵决策树来构建一个更强大的模型。提升树模型的基本思想是,将一系列弱学习器(通常是决策树)线性叠加,每一棵树都在尝试修正前一棵树的残差,从而逐步提升整体模型的性能。

2. 梯度提升树

梯度提升树是提升树的一种形式,它通过梯度下降的方法来最小化损失函数。具体来说,梯度提升树使用梯度下降算法来最小化损失函数的负梯度,以此来更新当前模型,使得模型在每一轮迭代中更接近于真实标签。

3. 算法流程

梯度提升树的算法流程如下:

  1. 初始化模型为一个常数值,通常是训练集标签的均值。
  2. 对于每一轮迭代:
    • 计算当前模型的负梯度,作为残差的近似值。
    • 使用负梯度拟合一个回归树模型。
    • 将新拟合的树模型与当前模型进行线性组合,更新模型。
  3. 重复上述步骤直到满足停止条件(如达到最大迭代次数)。

4. 理论公式

梯度提升树的更新公式如下所示:

对于第 i i i轮迭代,模型 F i ( x ) F_i(x) Fi(x),损失函数 L ( y , F i ( x ) ) L(y, F_i(x)) L(y,Fi(x)),学习率 η \eta η,则模型 F i + 1 ( x ) F_{i+1}(x) Fi+1(x)的更新公式为:

F i + 1 ( x ) = F i ( x ) + η h i ( x ) F_{i+1}(x) = F_i(x) + \eta h_i(x) Fi+1(x)=Fi(x)+ηhi(x)

其中, h i ( x ) h_i(x) hi(x)是第 i i i棵树的预测结果。

5. 随机森林与GBDT的区别与联系

随机森林和梯度提升树都是基于决策树的集成学习方法,它们有一些相似之处,也有一些显著的区别。

  • 相似之处:

    • 都是通过组合多个决策树来构建强大的模型。
    • 都可以用于分类和回归问题。
  • 区别:

    • 随机森林是一种自助聚合技术,它通过随机抽样生成多个不同的训练集,并在每个训练集上训练一个决策树,最后通过投票或平均来获得最终结果。而梯度提升树是一种串行技术,它通过迭代地训练决策树,每个决策树都在尝试修正前一棵树的残差。
    • 随机森林中的每棵树是相互独立的,而梯度提升树中的每棵树是依次构建的,每一棵树都在尝试修正前一棵树的错误。
    • 随机森林中每棵树的预测结果是通过投票或平均来决定的,而梯度提升树中每棵树的预测结果是通过加权求和来决定的。

6. Python实现算法

以下是Python实现梯度提升树算法的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from matplotlib.colors import ListedColormap# 加载数据集
iris = load_iris()
X, y = iris.data[:, :2], iris.target  # 取前两个特征# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建梯度提升树模型
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
clf.fit(X_train, y_train)# 在测试集上进行预测
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Gradient Boosting Accuracy:", accuracy)# 绘制分类结果
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):markers = ('s', 'x', 'o', '^', 'v')colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')cmap = ListedColormap(colors[:len(np.unique(y))])x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)Z = Z.reshape(xx1.shape)plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)plt.xlim(xx1.min(), xx1.max())plt.ylim(xx2.min(), xx2.max())for idx, cl in enumerate(np.unique(y)):plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=[cmap(idx)],marker=markers[idx], label=cl)# 可视化分类结果
plt.figure(figsize=(10, 6))
plot_decision_regions(X_test, y_test, classifier=clf)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(loc='upper left')
plt.title('Gradient Boosting Classification Result on Test Set')
plt.show()

在这里插入图片描述

7. 总结

本文介绍了梯度提升树(Gradient Boosting Decision Trees,GBDT)算法的原理、算法流程、理论公式,并与随机森林进行了对比。梯度提升树是一种基于决策树的集成学习方法,通过迭代地训练决策树来不断提升模型性能。相比于随机森林,梯度提升树是一种串行技术,每个决策树都在尝试修正前一棵树的残差,因此在某些情况下可能会更加灵活和有效。通过Python实现了梯度提升树算法,并在鸢尾花数据集上进行了模型训练和评估。

相关文章:

机器学习——GBDT算法

机器学习——GBDT算法 在机器学习领域,梯度提升决策树(Gradient Boosting Decision Trees,简称GBDT)是一种十分强大且常用的集成学习算法。它通过迭代地训练决策树来不断提升模型性能,是一种基于弱学习器的提升算法。…...

阿里二面:谈谈ThreadLocal的内存泄漏问题?问麻了。。。。

引言 ThreadLocal在Java多线程编程中扮演着重要的角色,它提供了一种线程局部存储机制,允许每个线程拥有独立的变量副本,从而有效地避免了线程间的数据共享冲突。ThreadLocal的主要用途在于,当需要为每个线程维护一个独立的上下文…...

IOS面试题编程机制 46-50

46. 阐述 Method Swizzle(黑魔法),什么情况下会使用?1). 在没有一个类的实现源码的情况下,想改变其中一个方法的实现,除了继承它重写、和借助类别重名方法暴力抢先之外,还有更加灵活的方法 Method Swizzle。 2). Method Swizzle 指的是改变一个已存在的选择器对应的实现…...

web表单标签与练习(3.18)

一、表单域 表单域是一个包含表单元素的区域。 在HTML标签中&#xff0c;< form >标签用于定义表单域&#xff0c;以实现用户信息和传递。 < form >会把它范围内的表单元素信息提交给服务器。 表单属性 action url地址 用于指定接收并处理表单数据的服务器程序的…...

【协议-HTTP】

HTTP协议 HTTP协议(超文本传输协议HyperText Transfer Protocol)&#xff0c;它是基于TCP协议的应用层传输协议。http协议定义web客户端如何才能够web服务器请求web页面&#xff0c;以及服务器如何把web页面传送给客户端。 HTTP 是一种无状态 (stateless) 协议, HTTP协议本身…...

VUE3v-text、v-html、:style的理解

在Vue 3中&#xff0c;v-text、v-html和:style是三个常用的指令&#xff0c;它们各自具有不同的功能和用途。 v-text&#xff1a; v-text用于操作元素中的纯文本内容。它接受一个表达式&#xff0c;并将该表达式的值设置为元素的文本内容。如果元素原本有文本内容&#xff0c…...

Dataset之UCI_autos_cars:UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略

Dataset之UCI_autos_cars&#xff1a;UCI_autos_imports-85(汽车进口数据集)的简介、安装、案例应用之详细攻略 目录 UCI_autos_imports-85的简介 UCI_autos_imports-85的安装 UCI_autos_imports-85的案例应用 1、训练一个简单的线性回归模型来预测汽车的价格 UCI_autos_i…...

结构体类型详细讲解(附带枚举,联合)

前言&#xff1a; 如果你还对结构体不是很了解&#xff0c;那么本篇文章将会从 为什么存在结构体&#xff0c;结构体的优点&#xff0c;结构体的定义&#xff0c;结构体的使用与结构体的大小依次介绍&#xff0c;同样会附带枚举与联合体 目录 为什么存在结构体&#xff1a; 结构…...

编程生活day1--个位数统计、考试座位号、A-B、计算阶乘和

个位数统计 题目描述&#xff1a; 定一个 k 位整数 Ndk−1​10k−1⋯d1​101d0​ (0≤di​≤9, i0,⋯,k−1, dk−1​>0)&#xff0c;请编写程序统计每种不同的个位数字出现的次数。例如&#xff1a;给定 N100311&#xff0c;则有 2 个 0&#xff0c;3 个 1&#xff0c;和 …...

mysql体系结构及主要文件

目录 1.mysql体系结构 2.数据库与数据库实例 3.物理存储结构​编辑 4.mysql主要文件 4.1数据库配置文件 4.2错误日志 4.3表结构定义文件 4.4慢查询日志 4.4.1慢查询相关参数 4.4.2慢查询参数默认值 4.4.3my.cnf中设置慢查询参数 4.4.4slow_query_log参数 4.4.…...

PwnLab靶场PHP伪协议OSCP推荐代码审计命令劫持命令注入

下载链接&#xff1a;PwnLab: init ~ VulnHub 安装&#xff1a; 打开vxbox直接选择导入虚拟电脑即可 正文&#xff1a; 先用nmap扫描靶机ip nmap -sn 192.168.1.1/24 获取到靶机ip后&#xff0c;对靶机的端口进行扫描&#xff0c;并把结果输出到PwnLab文件夹下&#xff0c;命名…...

涉密信息系统集成资质八大类别办理条件是什么?

涉密资质分为八个不同类别&#xff0c;那每个类别的申报条件有哪些&#xff1f;让我们一起来看看吧&#xff1a; 涉密资质申报条件 依据《涉密信息系统集成资质管理办法》的有关规定&#xff0c;申请涉密信息系统集成资质的企事业单位&#xff0c;除符合《涉密信息系统集成资…...

Shell脚本总结-反引号-${}-$()

反引号 反引号的作用就是将输出结果显示出来。 [rootldpbzhaonan bash]$ echo $a ldpbzhaonan${} ${}引用变量&#xff0c;包含自定义的和环境变量。 [rootldpbzhaonan bash]$ a1 [rootldpbzhaonan bash]$ echo ${a} 1$() $()和反引号&#xff0c;返回的是一个指令或者程序…...

Spring MVC入门(4)

请求 获取Cookie/Session 获取Cookie 传统方式: RequestMapping("/m11")public String method11(HttpServletRequest request, HttpServletResponse response) {//获取所有Cookie信息Cookie[] cookies request.getCookies();//打印Cookie信息StringBuilder build…...

RuoYi-Vue-Plus(基础知识点jackson、mybatisplus、redis)

一、JacksonConfig 全局序列化反序列化配置 1.1yml中配置 #时区 spring.jackson.time-zoneGMT8 #日期格式 spring.jackson.date-formatyyyy-MM-dd HH:mm:ss #默认转json的属性&#xff0c;这里设置为非空才转json spring.jackson.default-property-inclusionnon_null #设置属性…...

使用verillog编写KMP字符串匹配算法

设计思路如下: 定义模块的输入输出信号:包括时钟信号clk、复位信号rst、模式串pattern、文本串text以及输出信号match。定义所需寄存器和变量:使用寄存器来存储状态机的状态以及其他控制变量,如模式串数组P、失配函数数组F、模式串位置p_index、文本串位置t_index等。在时钟…...

《每天十分钟》-红宝书第4版-对象、类与面向对象编程(五)

对象迭代 在 JavaScript 有史以来的大部分时间内&#xff0c;迭代对象属性都是一个难题。ECMAScript 2017 新增了两个静态方法&#xff0c;用于将对象内容转换为序列化的——更重要的是可迭代的——格式。这两个静态方法Object.values()和 Object.entries()接收一个对象&#…...

华为ensp中rip动态路由协议原理及配置命令(详解)

CSDN 成就一亿技术人&#xff01; 作者主页&#xff1a;点击&#xff01; ENSP专栏&#xff1a;点击&#xff01; CSDN 成就一亿技术人&#xff01; ————前言————— RIP&#xff08;Routing Information Protocol&#xff0c;路由信息协议&#xff09;是一种距离矢…...

学习要不畏难

我突然发现&#xff0c;畏难心是阻碍我成长的最大敌人。事未难&#xff0c;心先难&#xff0c;心比事都难&#xff0c;是我最大的毛病。然而一念由心生&#xff0c;心不难时&#xff0c;则真难事也不再难。很多那些自认为很难的事&#xff0c;硬着头皮做下来的时候&#xff0c;…...

mysql迁移达梦数据库 Java踩坑合集

达梦数据库踩坑合集 文章目录 安装达梦设置大小写不敏感Spring boot引入达梦驱动&#xff08;两种方式&#xff09;将jar包打入本地maven仓库使用国内maven仓库&#xff08;阿里云镜像&#xff09; 达梦驱动yml配置springboot mybatis-plus整合达梦,如何避免指定数据库名&…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...